The present study compared the effects of environmental enrichment on spatial memory, glutamic acid decarboxylase (GAD) activity, and synaptophysin levels in middle-aged male and female mice. Prior to testing, a subset of 18-month-old male and female C57BL/6 mice was housed with two to three toys and a running wheel in the home cage for up to 29 d. Adult mice (7 mo) of both sexes and the remaining middle-aged mice were group (social) housed, but not exposed to enriching objects. After the enrichment period, all mice were tested in a 1-day version of the Morris water maze, in which both spatial and nonspatial memory were assessed. Immediately after testing, the hippocampus and frontoparietal cortex were dissected, and GAD activity and synaptophysin levels were measured. Environmental enrichment reduced the age-related impairment in spatial acquisition and retention; relative to adult social controls, middle-aged enriched mice were unimpaired, whereas middle-aged social controls were impaired. This reduction was similar in middle-aged males and females. Enrichment did not affect cued memory in either sex. Although hippocampal GAD activity was increased by enrichment in males, all other neurochemical measurements were unaffected by enrichment or aging in either sex. These data suggest that environmental enrichment initiated at middle age can reduce age-related impairments in spatial memory in males and females, although the underlying neurobiological mechanisms of this effect remain unknown.
The ability to selectively lesion mouse basal forebrain cholinergic neurons would permit experimental examination of interactions between cholinergic functional loss and genetic factors associated with neurodegenerative disease. We developed a selective toxin for mouse basal forebrain cholinergic neurons by conjugating saporin (SAP), a ribosome-inactivating protein, to a rat monoclonal antibody against the mouse p75 nerve growth factor (NGF) receptor (anti-murine-p75). The toxin proved effective and selective in vitro and in vivo. Intracerebroventricular injections of anti-murine-p75-SAP produced a dose-dependent loss of choline acetyltransferase (ChAT) activity in the hippocampus and neocortex without affecting glutamic acid decarboxylase (GAD) activity. Hippocampal ChAT depletions induced by the immunotoxin were consistently greater than neocortical depletions. Immunohistochemical analysis revealed a dose-dependent loss of cholinergic neurons in the medial septum (MS) but no marked loss of cholinergic neurons in the nucleus basalis magnocellularis after intracerebroventricular injection of the toxin. No loss of noncholinergic neurons in the MS was apparent, nor could we detect loss of noncholinergic cerebellar Purkinje cells, which also express p75. Behavioral analysis suggested a spatial learning deficit in anti-murine-p75-SAP-lesioned mice, based on a correlation between a loss of hippocampal ChAT activity and impairment in Morris water maze performance. Our results indicate that we have developed a specific cholinergic immunotoxin for mice. They also suggest possible functional differences in the mouse and rat cholinergic systems, which may be of particular significance in attempts to develop animal models of human diseases, such as Alzheimer's disease, which are associated with impaired cholinergic function.
Vascular smooth muscle cell (VSMC) hyperplasia is responsible for the failure of 15-30% of vascular surgical procedures such as coronary artery bypass grafts and angioplasties. We and others have shown that heparin suppresses VSMC proliferation in vivo and in cell culture. We hypothesize that heparin inhibits VSMC proliferation by binding to cell surface receptors, resulting in selective modulation of mitogenic signal transduction pathways and altered transcription of a specific subset of growth regulatory genes. To test this idea, we used subtractive hybridization to identify differentially expressed mRNAs in heparin-treated and untreated VSMC. We identified a heparin induced mRNA identical to Cop-1, a member of the CCN family of proteins which are secreted, cysteine-rich modular proteins involved in growth regulation and migration. Cop-1 from smooth muscle cells appears to have a different expression pattern and possibly different functions than Cop-1 from other cells. Cop-1 mRNA is expressed at high levels in quiescent VSMC and at low levels in proliferating VSMC, an expression pattern highly characteristic of growth arrest specific genes. Cop-1 mRNA is expressed at high levels in heparin treated VSMC and COP-1 protein is secreted into culture medium. In tissues, Cop-1 expression is observed in the uninjured rat aorta suggesting a possible role for Cop-1 in vivo. We found PDGF, but not EGF, inhibits the expression of Cop-1 in VSMC. Neither TGF-beta nor interferon-beta, two inhibitors of VSMC proliferation, were able to induce Cop-1 expression. In addition, heparin does not induce Cop-1 mRNA in endothelial cells and VSMC resistant to the antiproliferative effect of heparin. Conditioned medium from cells over-expressing COP-1 protein inhibits VSMC proliferation in culture. Together, our data indicate that COP-1 may play a role in the antiproliferative mechanism of action of heparin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.