Vasopressin (Avp) is mainly synthesized in the magnocellular cells of the hypothalamic supraoptic (SON) and paraventricular nuclei (PVN) whose axons project to the posterior pituitary. Avp is then released into the blood stream upon appropriate stimulation (e.g., hemorrhage or dehydration) to act at the kidneys and blood vessels. The brain also contains several populations of smaller, parvocellular neurons whose projections remain within the brain. These populations are located within the PVN, bed nucleus of the stria terminalis (BNST), medial amygdala (MeA) and suprachiasmatic nucleus (SCN).Since the 1950's, research examining the roles of Avp in the brain and periphery has intensified. The development of specific agonists and antagonists for Avp receptors has allowed for a better elucidation of its contributions to physiology and behavior. Anatomical, pharmacological and transgenic, including "knockout," animal studies, have implicated Avp in the regulation of various social behaviors across species.Avp plays a prominent role in the regulation of aggression, generally of facilitating or promoting it. Affiliation and certain aspects of pair-bonding are also influenced by Avp. Memory, one of the first brain functions of Avp that was investigated, has been implicated especially strongly in social recognition. The roles of Avp in stress, anxiety, and depressive states are areas of active exploration. In this review, we concentrate on the scientific progress that has been made on understanding the role of Avp in regulating of these and other behaviors across species, as well as discuss the implications for human behavior.
Oxytocin plays important roles in reproductive physiology and various behaviors, including maternal behavior and social memory. Its receptor (Oxtr) is present in peripheral tissues and brain, so a conditional knockout (KO, -/-) would be useful to allow elimination of the receptor in specific sites at defined times. We created a line of mice in which loxP sites flank Oxtr coding sequence (floxed) enable Cre recombinase-mediated inactivation of the receptor. We expressed Cre recombinase in these mice either in all tissues (Oxtr(-/-)) or the forebrain (Oxtr(FB/FB)) using the Ca(2+)/calmodulin-dependent protein kinase IIalpha promoter. The latter KO has reduced Oxtr binding beginning 21-28 d postnatally, leading to prominent reductions in the lateral septum, hippocampus, and ventral pallidum. The medial amygdala is spared, and there is significant retention of binding within the olfactory bulb and nucleus and neocortex. We did not observe any deficits in the general health, sensorimotor functions, anxiety-like behaviors, or sucrose intake in either Oxtr(-/-) or Oxtr(FB/FB) mice. Females of both KO types deliver pups, but only the Oxtr(FB/FB) mice are able to eject milk. Oxtr(-/-) males show impaired social memory for familiar females, whereas the Oxtr(FB/FB) males appear to recognize their species but not individuals. Our results confirm the importance of oxytocin in social recognition and demonstrate that spatial and temporal inactivation of the Oxtr will enable finer understanding of the physiological, behavioral, and developmental roles of the receptor.
The function of the CA2 region of the hippocampus is poorly understood. While the CA1 and CA3 regions have been extensively studied, for years the CA2 region has primarily been viewed as a linking area between the two. However, the CA2 region is known to have distinct neurochemical and structural features that are different from the other parts of hippocampus and in recent years it has been suggested that the CA2 region may play a role in the formation and or recall of olfactory-based memories needed for normal social behavior. While this hypothesis has been supported by hippocampal lesion studies that have included the CA2 region, no studies have attempted to specifically lesion the CA2 region of the hippocampus in mice to determine the effects on social recognition memory and olfaction. To fill this knowledge gap, we sought to perform excitotoxic N-methyl-D aspartate (NMDA) lesions of the CA2 region in mice and determine the effects on social recognition memory. We predicted that lesions of the CA2 region would impair social recognition memory. We then went on to test olfaction in CA2 lesioned mice since social memory requires a functional olfactory system. Consistent with our prediction, we found that CA2 lesioned animals have impaired social recognition. These findings are significant because they confirm that the CA2 region of the hippocampus is a part of the neural circuitry that regulates social recognition memory, which may have implications for our understanding of the neural regulation of social behavior across species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.