Endurance running may have a long evolutionary history in the hominin clade but it was not until very recently that humans ran wearing shoes. Research on modern habitually unshod runners has suggested that they utilize a different biomechanical strategy than runners who wear shoes, namely that barefoot runners typically use a forefoot strike in order to avoid generating the high impact forces that would be experienced if they were to strike the ground with their heels first. This finding suggests that our habitually unshod ancestors may have run in a similar way. However, this research was conducted on a single population and we know little about variation in running form among habitually barefoot people, including the effects of running speed, which has been shown to affect strike patterns in shod runners. Here, we present the results of our investigation into the selection of running foot strike patterns among another modern habitually unshod group, the Daasanach of northern Kenya. Data were collected from 38 consenting adults as they ran along a trackway with a plantar pressure pad placed midway along its length. Subjects ran at self-selected endurance running and sprinting speeds. Our data support the hypothesis that a forefoot strike reduces the magnitude of impact loading, but the majority of subjects instead used a rearfoot strike at endurance running speeds. Their percentages of midfoot and forefoot strikes increased significantly with speed. These results indicate that not all habitually barefoot people prefer running with a forefoot strike, and suggest that other factors such as running speed, training level, substrate mechanical properties, running distance, and running frequency, influence the selection of foot strike patterns.
Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus.
Humans sweat to cool their bodies and have by far the highest eccrine sweat gland density among primates. Humans’ high eccrine gland density has long been recognized as a hallmark human evolutionary adaptation, but its genetic basis has been unknown. In humans, expression of the Engrailed 1 (EN1) transcription factor correlates with the onset of eccrine gland formation. In mice, regulation of ectodermal En1 expression is a major determinant of natural variation in eccrine gland density between strains, and increased En1 expression promotes the specification of more eccrine glands. Here, we show that regulation of EN1 has evolved specifically on the human lineage to promote eccrine gland formation. Using comparative genomics and validation of ectodermal enhancer activity in mice, we identified a human EN1 skin enhancer, hECE18. We showed that multiple epistatically interacting derived substitutions in the human ECE18 enhancer increased its activity compared with nonhuman ape orthologs in cultured keratinocytes. Repression of hECE18 in human cultured keratinocytes specifically attenuated EN1 expression, indicating this element positively regulates EN1 in this context. In a humanized enhancer knock-in mouse, hECE18 increased developmental En1 expression in the skin to induce the formation of more eccrine glands. Our study uncovers a genetic basis contributing to the evolution of one of the most singular human adaptations and implicates multiple interacting mutations in a single enhancer as a mechanism for human evolutionary change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.