Studies were conducted from 1989 to 1993 in continuous no-tillage and moldboard plow corn fields to describe rates of velvetleaf seed predation with time and with seed density, and to identify principal seed predators. Rates of seed loss from the soil surface averaged 1 to 57% day−1and were equivalent in the two tillage systems. Predator populations were the same in no-tillage and moldboard plow fields. The predation rate was generally low in winter months, increased in mid-summer, and declined in late summer. In 2 of the 4 yr, predation increased in October and November. The predation rate was described by an exponential decay function of seed density, with high rates of seed loss at low densities and leveling off to a nearly constant level at densities above 600 seeds m−2. Predation was highest where seed access was not restricted, and exclosures of 6.5 and 1.6 cm2reduced predation up to 15 and 52%, respectively. Mice were important predators in the field. In laboratory feeding studies, the carabid beetleAmara cupreolata, the slugsArion subfuscusandDeroceras reticulatum, and cutworms (Agrotis ipsilon) consumed imbibed velvetleaf seeds.Amara cupreolataand A.subfuscuswere the only predators to damage unimbibed velvetleaf seeds.
The impact of seed production by subthreshold weed populations on future weed problems has impeded the adoption of integrated pest-management principles for weed management. Studies were conducted in fields with no velvetleaf history to determine how seedbanks and seedling populations change following seed production 1 yr or 5 consecutive yr in plow-disk and no-tillage corn. Cumulative seed production by 0.19 velvetleaf plants m−2increased in a linear fashion from 1989 to 1994, with annual additions averaging from 330 seeds m−2for velvetleaf in corn to 2,500 seeds m−2for velvetleaf without competition from corn. Five-year cumulative seed production was 1,480 seeds m−2in plow-disk and 1,810 seeds m−2in no-till corn. In no-till corn, 42 velvetleaf seedlings m−2emerged the 1st year after the 1989 seed rain, but only 35 seedlings m−2emerged over the next 4 yr. In plow-disk plots, annual emergence averaged 12 seedlings m−2. Five years after the 1989 seed rain, the proportion of seeds lost to emergence was about 20% in both tillage treatments. Where velvetleaf seeds were allowed to return to the soil every year, cumulative seedling emergence was lower in plow-disk than in no-till corn, with total emergence of 70 and 360 seedlings m−2, respectively, after 5 yr. Seedbank numbers ranged from 10 seeds m−25 yr after a single seed rain (290 seeds m−2) by velvetleaf in plow-disk corn to 1,020 seeds m−2following 5 consecutive yr of seed rain where 12,580 seeds m−2were returned without corn competition in no-till. Seedbank samples in the fall of the 5th year had 69 to 98% fewer seeds than were accounted for by cumulative seed rain and seedling emergence, with greater apparent seed losses in plow-disk corn than in no-till corn. Over 90% velvetleaf control would be required annually to maintain subthreshold populations for 5 yr following a single seed rain. By comparison, over 95% control would be required annually to maintain subthreshold populations where velvetleaf seed return is permitted each year.
Understanding patterns of weed seedling emergence within a growing season and over years is important to develop models to predict optimum timing of weed management practices. A study was conducted in a field with no previous velvetleaf infestations to describe emergence patterns following seed burial at three depths in two tillage systems. Freshly harvested velvetleaf seeds were planted 0, 2, and 6 cm deep in moldboard plowed (MP) and no-tillage (NT) corn stubble in October 1990. Velvetleaf seedling emergence was monitored over the following 4 yr in continuous corn. Emergence was higher in NT than in MP plots throughout 4 yr of observation. The first growing season following seeding, emerged seedlings represented 9.3 to 15.8% of the seeds sown in NT, compared with 0.1 to 0.8% of seeds sown in MP. After four growing seasons, emerged seedlings were 12.5 to 25% of seeds sown in NT but only 6 to 7.4 % of seeds sown in MP. Emergence was consistently higher from the 0-cm depth than from the 6-cm depth in NT, but seeding depth did not influence emergence in MP due to mixing of the soil during tillage. Velvetleaf emergence was related to growing degree days (base 7.5 C), with greater consistency in NT than in MP. Averaged over years and planting depths, 50% velvetleaf emergence occurred within 8 and 13 d of the predicted date in NT and MP systems, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.