We present a probabilistic model of user affect designed to allow an intelligent agent to recognise multiple user emotions during the interaction with an educational computer game. Our model is based on a probabilistic framework that deals with the high level of uncertainty involved in recognizing a variety of user emotions by combining in a Dynamic Bayesian Network information on both the causes and effects of emotional reactions. The part of the framework that reasons from causes to emotions (diagnostic model) implements a theoretical model of affect, the OCC model, which accounts for how emotions are caused by one's appraisal of the current context in terms of one's goals and preferences. The advantage of using the OCC model is that it provides an affective agent with explicit information not only on which emotions a user feels but also why, thus increasing the agent's capability to effectively respond to the users' emotions. The challenge is that building the model requires having mechanisms to assess user goals and how the environment fits them, a form of plan recognition. In this paper, we illustrate how we built the predictive part of the affective model by combining general theories with empirical studies to adapt the theories to our target application domain. We then present results on the model's accuracy, showing that the model achieves good accuracy on several of the target emotions. We also discuss the model's limitations, to open the ground for the next stage of the work, i.e., complementing the model with diagnostic information.
Abstract. We present a model of user affect to recognize multiple user emotions during interaction with an educational computer game. Our model deals with the high level of uncertainty involved in recognizing a variety of user emotions by probabilistically combining information on both the causes and effects of emotional reactions. In previous work, we presented the performance and limitations of the model when using only causal information. In this paper, we discuss the addition of diagnostic information on user affective valence detected via an EMG sensor, and present an evaluation of the resulting model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.