This study was aimed to evaluate the efficacy of synthesized selenium nanoparticles (SeNPs) capped with glucose and polyvinyl-pyrrolidone (PVP) on the hyperglycemia and prooxidants/antioxidants imbalance present in model streptozotocin (STZ)-induced diabetic rats. SeNPs were synthesized and characterized. Twenty-four albino male rats were grouped into four different groups. After the rats were induced to have type 2 diabetes by STZ, the SeNPs-treated groups received a dose of 0.5 mg/ml of SeNPs for seven days. Plasma glucose and insulin levels, pancreatic insulin expression, the levels of lipid peroxidation (LPO), nitric oxide (NO), glutathione peroxidase (GPx) and glutathione (GSH) were evaluated. TEM images revealed the formation of semispherical particles with average size between 40 and 50 nm. SeNPs administration successfully reduced the hyperglycemia, raised the levels of insulin in both the pancreas and the plasma and restored the damaged pancreatic tissue. SeNPs also showed enhancement of the elimination of the diabetes-induced oxidative stress injuries by decreasing the pancreatic LPO and NO levels. Furthermore, the activities of the antioxidant enzyme GPx and GSH levels of the diabetic rats were increased. In conclusion, SeNPs capped with PVP could be used in the future as an agent that could manage Diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.