The detection of COVID-19 from computed tomography (CT) scans suffered from inaccuracies due to its difficulty in data acquisition and radiologist errors. Therefore, a fully automated computer-aided detection (CAD) system is proposed to detect coronavirus versus non-coronavirus images. In this paper, a total of 200 images for coronavirus and non-coronavirus are employed based on 90% for training images and 10% testing images. The proposed system comprised five stages for organizing the virus prevalence. In the first stage, the images are preprocessed by thresholding-based lung segmentation. Afterward, the feature extraction technique was performed on segmented images, while the genetic algorithm performed on sixty-four extracted features to adopt the superior features. In the final stage, the K-nearest neighbor (KNN) and decision tree are applied for COVID-19 classification. The findings of this paper confirmed that the KNN classifier with K=3 is accomplished for COVID-19 detection with high accuracy of 100% on CT images. However, the decision tree for COVID-19 classification is achieved 95% accuracy. This system is used to facilitate the radiologist’s role in the prediction of COVID-19 images. This system will prove to be valuable to the research community working on automation of COVID-19 images prediction.
The rapid spread of coronavirus disease (COVID-19) has become a worldwide pandemic and affected more than 15 million patients reported in 27 countries. Therefore, the computational biology carrying this virus that correlates with the human population urgently needs to be understood. In this paper, the classification of the human protein sequences of COVID-19, according to the country, is presented based on machine learning algorithms. The proposed model is based on distinguishing 9238 sequences using three stages, including data preprocessing, data labeling, and classification. In the first stage, data preprocessing's function converts the amino acids of COVID-19 protein sequences into eight groups of numbers based on the amino acids' volume and dipole. It is based on the conjoint triad (CT) method. In the second stage, there are two methods for labeling data from 27 countries from 0 to 26. The first method is based on selecting one number for each country according to the code numbers of countries, while the second method is based on binary elements for each country. According to their countries, machine learning algorithms are used to discover different COVID-19 protein sequences in the last stage. The obtained results demonstrate 100% accuracy, 100% sensitivity, and 90% specificity via the country-based binary labeling method with a linear support vector machine (SVM) classifier. Furthermore, with significant infection data, the USA is more prone to correct classification compared to other countries with fewer data. The unbalanced data for COVID-19 protein sequences is considered a major issue, especially as the US's available data represents 76% of a total of 9238 sequences. The proposed model will act as a prediction tool for the COVID-19 protein sequences in different countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.