The detection of COVID-19 from computed tomography (CT) scans suffered from inaccuracies due to its difficulty in data acquisition and radiologist errors. Therefore, a fully automated computer-aided detection (CAD) system is proposed to detect coronavirus versus non-coronavirus images. In this paper, a total of 200 images for coronavirus and non-coronavirus are employed based on 90% for training images and 10% testing images. The proposed system comprised five stages for organizing the virus prevalence. In the first stage, the images are preprocessed by thresholding-based lung segmentation. Afterward, the feature extraction technique was performed on segmented images, while the genetic algorithm performed on sixty-four extracted features to adopt the superior features. In the final stage, the K-nearest neighbor (KNN) and decision tree are applied for COVID-19 classification. The findings of this paper confirmed that the KNN classifier with K=3 is accomplished for COVID-19 detection with high accuracy of 100% on CT images. However, the decision tree for COVID-19 classification is achieved 95% accuracy. This system is used to facilitate the radiologist’s role in the prediction of COVID-19 images. This system will prove to be valuable to the research community working on automation of COVID-19 images prediction.
A polyp is one of the major causes of gastroenterology, which leads to colorectal cancer. The detection of polyps by colonoscopy imaging is a significant challenge because of the diversity in polyp structure and lack of examination accuracy. To solve this problem, the automatic segmentation of polyps can be used to enhance examination accuracy and reduce gastrointestinal (GI) disease. In this paper, the framework of polyp image segmentation is developed by a deep learning approach, especially a convolutional neural network. This proposed framework used the Kvasir-SEG database, which contains 1000 GI polyp images and corresponding segmentation masks according to annotation by medical experts. This database is divided into 900 for training
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.