BackgroundThe reduced growth of plants during the winter causes a lack in the perceptibility of the phenological events making challenging the study of dormancy. For deciduous crops, dormancy is generally determined by evaluating budbreak of single-node cuttings that are exposed to conditions suitable for growth. However, the absence of a statistical basis for analyzing and interpreting the budbreak behavior evaluated as the percent budbreak, the average time to budbreak and the time to reach 50% budbreak, has caused inconsistent and contradictory criteria to identify the dormancy status of different deciduous crops.ResultsIn this study, a method was developed to analyze the duration between sampling and budbreak of single-node cuttings and to estimate the dormancy status for grapevines (Vitis vinifera L.) based on the time-to-event distribution of the observations. This method estimates the probability curve of budbreak for each sample and classifies each curve into paradormancy, endodormancy, and ecodormancy according to the significance when compared to a sample curve estimated from cuttings collected during paradormancy and referred to as “reference.”ConclusionThe approach described in this study provided a comparison of the budbreak distribution of cuttings collected during distinct phases with a confidence of 95%. It also allowed the estimation of the date of occurrence of the dormancy stages for two grapevine cultivars ‘Cabernet Sauvignon’ and ‘Chardonnay,’ based on the variability within the sampling season rather than on fixed arbitrary criteria. This approach can also be used to analyze budbreak data of single-node cuttings from other common deciduous crops.Electronic supplementary materialThe online version of this article (10.1186/s13007-018-0361-0) contains supplementary material, which is available to authorized users.
In semiarid apple (Malus domestica) growing regions, high temperatures and excessive solar radiation can increase the risk of sunburn development. Protective netting is increasingly used as a cultural practice under these conditions to mitigate fruit sunburn losses. However, fruit skin color development can be negatively affected under protective nets due to the reduction in light availability. Reflective groundcovers have been previously reported to increase fruit color development, particularly in the inner parts of the tree canopy. Here, we compared two types of reflective groundcover: a woven polyethylene fabric and a film material with a grassed control without reflective material under a protective netting installation that reduced photosynthetically active radiation (PAR) by 17%. The experiment was conducted in a semiarid climate on a 5-year-old ‘Cameron Select Honeycrisp’ apple orchard near Quincy, WA. Light penetration into the canopy was measured with a PAR sensor. At harvest, fruit quality, yield, and size were assessed. The use of reflective groundcover between the rows significantly increased reflected PAR into the lower canopy. Moreover, reflective groundcovers significantly increased the amount of fruit with greater than 25% skin red color compared with the control. Reflective groundcover did not affect fruit weight, yield, and fruit number. The use of reflective groundcover under protective netting can increase light penetration into the canopy, thereby improving fruit skin red coloration in apple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.