Piezoelectric materials reversibly deform when exposed to an electric field. This property is indispensable to modern engineering devices, enabling a wide range of sensors and actuators. However, unfortunately conventional piezoelectric materials are limited to operating temperatures of below approximately 200 °C. Lithium niobate is a promising candidate for high temperature applications (above 500 °C), as it has a high Curie temperature (1200 °C) and good piezoelectric properties. Nevertheless, degradation mechanisms occurring at elevated temperatures are not fully understood, although they are known to interfere with the piezoelectric behavior. In addition, the material properties of this technologically promising ceramic have not been adequately characterized at high temperatures, particularly when excited at high frequencies, due to the difficulty of performing such measurements. We therefore employ an electrochemical impedance spectroscopy resonance method using a novel analytical model to determine the material properties of single crystal lithium niobate over the wide frequency range of 100 kHz to 7 MHz for temperatures up to 750 °C. We find that lithium niobate retains its good piezoelectric properties over this entire frequency and temperature range and rules out suspected degradation mechanisms involving ionic conductivity or vacancy diffusion.
Piezoelectric materials have the intrinsic reversible ability to convert a mechanical strain into an electric field and their applications touch our daily lives. However, the complex physical mechanisms linking mechanical and electrical properties make these materials hard to understand. Computationally onerous models have historically been unable to adequately describe dynamic phenomena inside real piezoelectric materials, and are often limited to over-simplified first-order analytical, quasi-static, or unsatisfying phenomenological numerical approaches. We present a generalized dynamic analytical model based on first-principles that is efficiently computable and better describes these exciting materials, including higher-order coupling effects. We illustrate the significance of this model by applying it to the important 3m crystal symmetry class of piezoelectric materials that includes lithium niobate, and show that the model accurately predicts the experimentally observed impedance spectrum. This dynamic behavior is a function of almost all intrinsic properties of the piezoelectric material, so that material properties, including mechanical, electrical, and dielectric coefficients, can be readily and simultaneously extracted for any size crystal, including at the nanoscale; the only prior knowledge required is the crystal class of the material system. In addition, the model’s analytical approach is general in nature, and can increase our understanding of traditional and novel ferroelectric and piezoelectric materials, regardless of crystal size or orientation.
High temperature piezoelectric materials have numerous potential applications, including high temperature ultrasound NDT, MEMS, sensors, or actuators. However, conventional piezoelectric materials are unsuitable for operation above 400°C. Lithium niobate (LiNbO3) is a promising candidate because of its very high Curie temperature (approximately 1210°C) and reasonable piezoelectric coefficients. However, the piezoelectric properties are not sufficiently understood, partly due to the difficulties in characterizing this behavior at high temperature. Degradation mechanisms well below the Curie temperature, suspected to include phase transformations, oxygen loss, and excessive ionic conductivity, further deteriorate this property. In order to better understand these physical mechanisms, electrochemical impedance spectroscopy (EIS) is used to characterize monocrystalline LiNbO3 from room temperature to 500°C, with excitations from 20 Hz to 20 MHz. An equivalent circuit model analysis, including resonant frequencies, is developed to investigate the temperature dependence of the piezoelectric behavior, as well as the mechanical elasticity and damping. Numerical values extracted from this analysis allows for numerical simulations to model device behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.