The synthesis and full characterization of the new aqua-complex [(η(6)-p-cymene)Ru(OH2)(κ(2)-N,N-2-pydaT)](BF4)2, [2](BF4)2, and the nucleobase derivative [(η(6)-p-cymene)Ru(9-MeG)(κ(2)-N,N-2-pydaT)](BF4)2, [4](PF6)2, where 2-pydaT = 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine and 9-MeG = 9-methylguanine, are reported here. The crystal structures of both [4](PF6)2 and the chloro complex [(η(6)-p-cymene)RuCl(κ(2)-N,N-2-pydaT)](PF6), [1](PF6), have been elucidated by X-ray diffraction. The former provided relevant information regarding the interaction of the metallic fragment [(η(6)-p-cymene)Ru(κ(2)-N,N-2-pydaT)](2+) and a simple model of DNA. NMR and kinetic absorbance studies have proven that the aqua-complex [2](BF4)2 binds to the N7 site of guanine in nucleobases, nucleotides, or DNA. A stable bifunctional interaction (covalent and partially intercalated) between the [(η(6)-p-cymene)Ru(κ(2)-N,N-2-pydaT)](2+) fragment and CT-DNA has been corroborated by kinetic, circular dichroism, viscometry, and thermal denaturation experiments. The reaction mechanism entails the very fast formation of the Ru-O-(PO3) linkage prior to the fast intercalation of the 2-pydaT fragment. Then, a Ru-N7-(G) covalent bond is formed at the expense of the Ru-O-(PO3) bond, yielding a bifunctional complex. The dissociation rate of the intercalated fragment is slow, and this confers additional interest to [2](BF4)2 in view of the likely correlation between slow dissociation and biological activity, on the assumption that DNA is the only biotarget. Furthermore, [2](BF4)2 displays notable pH-dependent cytotoxic activity in human ovarian carcinoma cells (A2780, IC50 = 11.0 μM at pH = 7.4; IC50 = 6.58 μM at pH = 6.5). What is more, complex [2](BF4)2 is not cross-resistant with cisplatin, exhibiting a resistance factor, RF(A2780cis), of 0.28, and it shows moderate selectivity toward the cancer cell lines, in particular, A2780cis (IC50 = 3.0 5 ± 0.08 μM), relative to human lung fibroblast cells (MRC-5; IC50 = 24 μM), the model for healthy cells.
Subnanometer-sized metal clusters often feature a molecule-like electronic structure, which makes their physical and chemical properties significantly different from those of nanoparticles and bulk material. Considering potential applications, there is a major concern about their thermal stability and susceptibility towards oxidation. Cu clusters of only 5 atoms (Cu<sub>5</sub> clusters) are first synthesized in high concentration using a new-generation wet chemical method. Next, it is shown that, contrary to what is currently assumed, Cu<sub>5</sub> clusters display nobility, beyond resistance to irreversible oxidation, at a broad range of temperatures and oxygen pressures. The outstanding nobility arises from an unusual reversible oxidation which is observed by <i>in situ</i> X-ray Absorption Spectroscopy and X-ray Photoelectron Spectroscopy on Cu<sub>5</sub> clusters deposited onto highly oriented pyrolitic graphite at different oxygen pressures and up to 773 K. This atypical property is explained by a theoretical approach combining different state-of-the-art first principles theories. It reveals the essential role of collective quantum effects in the physical mechanism responsible for the nobility of Cu<sub>5</sub> clusters, encompassing a structural ‘breathing’ through concerted Cu–Cu elongations/contractions upon O<sub>2</sub> uptake/release, and collective charge transfer as well. A predictive phase diagram of their reversible oxidation states is also delivered, agreeing with the experimental observations. The collective quantum effects responsible of the observed nobility are expected to be general in subnanometer-sized metal clusters, pushing this new generation of materials to an upper level.
Subnanometer-sized metal clusters often feature a molecule-like electronic structure, which makes their physical and chemical properties significantly different from those of nanoparticles and bulk material. Considering potential applications, there is a major concern about their thermal stability and susceptibility towards oxidation. Cu clusters of only 5 atoms (Cu<sub>5</sub> clusters) are first synthesized in high concentration using a new-generation wet chemical method. Next, it is shown that, contrary to what is currently assumed, Cu<sub>5</sub> clusters display nobility, beyond resistance to irreversible oxidation, at a broad range of temperatures and oxygen pressures. The outstanding nobility arises from an unusual reversible oxidation which is observed by <i>in situ</i> X-ray Absorption Spectroscopy and X-ray Photoelectron Spectroscopy on Cu<sub>5</sub> clusters deposited onto highly oriented pyrolitic graphite at different oxygen pressures and up to 773 K. This atypical property is explained by a theoretical approach combining different state-of-the-art first principles theories. It reveals the essential role of collective quantum effects in the physical mechanism responsible for the nobility of Cu<sub>5</sub> clusters, encompassing a structural ‘breathing’ through concerted Cu–Cu elongations/contractions upon O<sub>2</sub> uptake/release, and collective charge transfer as well. A predictive phase diagram of their reversible oxidation states is also delivered, agreeing with the experimental observations. The collective quantum effects responsible of the observed nobility are expected to be general in subnanometer-sized metal clusters, pushing this new generation of materials to an upper level.
The interaction of thionine with triple, double, and single RNA helices has been fully characterized by thermodynamic and kinetic methods. The nature of the interaction of thionine with the synthetic polynucleotides poly(rU), poly(rA)·poly(rU), and poly(rA)·2poly(rU) has been studied at pH = 7.0 and 25 °C by UV absorbance, fluorescence, circular dichroism spectroscopy, viscometry, differential scanning calorimetry, and T-jump kinetic measurements. The results show that at I = 0.1 M thionine binds to a single poly(rU) strand, destabilizes the poly(rA)·2poly(rU) triplex by external binding, and intercalates into poly(rA)·poly(rU) with similar affinity to the thionine/DNA intercalated complex (Paul, P.; Kumar, G. S. J. Fluoresc. 2012, 22, 71-80). On the other hand, the differential scanning calorimetry measurements performed with thionine display a point in which the heat capacity remains unaltered, revealing the equilibrium of isothermal denaturation: thionine/poly(rA)·2poly(rU) + thionine ⇌ thionine/poly(rA)·poly(rU) + thionine/poly(rU), an outcome supported by the other techniques used. The denaturation equilibrium constant, K(D) (25 °C) = 522 M(-1), was evaluated from the affinity with the single, duplex, and triplex RNA.
In this work, we report experimental and computational evidence for the intercalation into the DNA base-pairs of the free quinones quinizarin (Q) and naphthazarin (N) and the interstrand covalent binding of their p-cymene di-ruthenium(ii) complexes (ClRuX, with X = N, Q bridging ligands). The intercalation extent for the N complex was larger than that for Q, which is in good agreement with the higher relative contour length and melting temperature for the same C/C ratio and with the computational mean stacking distances between the ligand and the nearest base-pair (3.34 Å and 3.19 Å) for N and Q, respectively. However, the apparent binding constant of Q/DNA, two orders higher than that of N/DNA, indicates that the thermal stability of the X/DNA complex is more related to the degree of intercalation than to the magnitude of the binding constant. ClRuX complexes undergo aquation, forming the aqua-derivatives [(HO)RuX]. These can further bind covalently to DNA via interstrand crosslinking, through both Ru centres and two N7 sites of consecutive guanines, to give (DNA)RuX complexes, by a mechanism similar to that of cisplatin. To the best of our knowledge, this type of interaction with dinuclear Ru(ii) complexes has not been reported hitherto. The experimental and computational results reveal that the number of rings of the aromatic moiety and the covalent binding to DNA play a key role in the behaviour of the quinones and their Ru(ii) derivatives. The cytotoxicity of the ligands and the corresponding Ru(ii) complexes was evaluated in MCF-7, A2780, A2780cis tumour cells and in the healthy cell line MRC-5. The cytotoxic activity was notable for N and negligible for Q. The IC values and the resistance (RF) and selectivity (SF) factors show that the ClRuN complex is the most promising among the four studied anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.