Esta es la versión de autor del artículo publicado en: This is an author produced version of a paper published in: trapping with a single infrared laser beam. Contrary to expectations, the single UCNP emission differs from that generated by an assembly of UCNPs. The experimental data reveal that the differences can be explained in terms of modulations caused by radiationtrapping, a phenomenon not considered before but this work reveals to be of great relevance.
3D remote control of multifunctional fluorescent up-converting nanoparticles (UCNPs) using optical forces is being required for a great variety of applications including single-particle spectroscopy, single-particle intracellular sensing, controlled and selective light-activated drug delivery and light control at the nanoscale. Most of these potential applications find a serious limitation in the reduced value of optical forces (tens of fN) acting on these nanoparticles, due to their reduced dimensions (typically around 10 nm). In this work, this limitation is faced and it is demonstrated that the magnitude of optical forces acting on UCNPs can be enhanced by more than one order of magnitude by a controlled modification of the particle/medium interface. In particular, substitution of cationic species at the surface by other species with higher mobility could lead to UCNPs trapping with constants comparable to those of spherical metallic nanoparticles.
The trade-off between photobrightening and photobleaching controls the emission stability of colloidal quantum dots. This balance is critical in optical trapping configurations, where irradiances that confine and simultaneously excite the nanocrystals in the focal region cannot be indefinitely lowered. In this work, we studied the photobrightening and bleaching behaviors of two types of silica-encapsulated quantum dots excited upon two-photon absorption in an optical trap. The first type consists of alloyed CdSeZnS quantum dots covered with a silica shell. We found that the dynamics of these as-prepared architectures are similar to those previously reported for bare surface-deposited quantum dots, where thousands of times smaller irradiances were used. We then analyzed the same quantum dot systems treated with an extra intermediate sulfur passivating shell for the better understanding of the surface traps influence in the temporal evolution of their emission in the optical trap. We found that these latter systems exhibit better homogeneity in their photodynamic behavior compared to the untreated ones. These features strengthen the value of quantum dot preparations in optical manipulation as well as for applications where both long and maximal emission stability in physiological and other polar media are required.
Heat generation by point-like structures is an appealing concept for its implications in nanotechnology and biomedicine. The way to pump energy that excites heat locally and the synthesis of nanostructures that absorb such energy are key issues in this endeavor. Highfrequency alternate magnetic or near-infrared optical fields are used to induce heat in iron oxide nanoparticles, a combined solution that is being exploited in hyperthermia treatments. However, the temperature determination around a single iron oxide nanoparticle remains a challenge. We study the heat released from iron oxide nanostructures under near-infrared illumination on a oneby-one basis by optical tweezers. To measure the temperature, we follow the medium viscosity changes around the trapped particle as a function of the illuminating power, thus avoiding the use of thermal probes. Our results help interpreting temperature, a statistic parameter, in the nanoscale and the concept of heat production by nanoparticles under thermal agitation. TOC Graphic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.