Cellulose aerogels have been prepared starting from cellulose-NMMO solutions via the classical aerogel-path. Different cellulosic materials have been tested and their influence on the properties of the product aerogels has been studied. Other parameters that have been varied include solution composition as well as the way of cellulose regeneration (solvent and temperature). More than 300 different samples were prepared and analysed. Their density is in a typical range from 0.02 g/cm 3 to 0.2 g/cm 3 and their internal surface area ranges from 100 m 2 /g to 400 m 2 /g. Another property investigated in detail beside density and internal surface area was the shrinkage of the cellulosic bodies during the production process.
Three different levels of autohydrolysis intensity, expressed as the prehydrolysis (P)-factor, were applied to Eucalyptus globulus wood at a liquor/wood ratio of 5:1. Lignin fractions were isolated from the wood residue as milled wood lignin (MWL), from the hydrolysate by centrifugation (insoluble fraction) and by ethyl acetate extraction (soluble fraction), and from the reactor wall as precipitate. With increasing autohydrolysis duration, a decrease in the content of aliphatic hydroxyl groups and of β-O-4 structures was detected in all lignin fractions, whereas the content of phenolic hydroxyl groups increased in the same order. MWL isolated from wood residue after autohydrolysis at the highest P-factor contained only half the β-O-4 structures contained in native lignin. Molecular weight distribution measurements revealed that fragmentation reactions dominated over condensation reactions in all lignin samples investigated. However, low-molecular-weight lignin dissolved in autohydrolysate exhibited extremely high reactivity towards acid-catalysed condensation reaction, which inevitably leads to the formation of sticky precipitates during storage at elevated temperature under the acid conditions prevailing.
The effect of autohydrolysis of Eucalyptus globulus wood was studied with regard to conditions applied in a prehydrolysis-kraft process on the physico-chemical properties of lignin obtained in both the wood residue and hydrolysate. As a reference, milled wood lignin (MWL) was isolated from native wood and compared to three lignin fractions formed during prehydrolysis: 1) lignin from the wood residue isolated as MWL, 2) lignin precipitated from the prehydrolysate during cooling and separated by centrifugation, and 3) lignin degradation products soluble in the prehydrolysate extracted with ethylacetate. All lignin fractions were subjected to Fourier transform infrared (FTIR) spectroscopy, methoxy group determination, elemental analysis, size exclusion chromatography and quantitative nuclear magnetic resonance (NMR) spectroscopy. The results indicate that extensive lignin degradation occurs during prehydrolysis through homolytic cleavage of the aryl-ether bonds resulting in a substantial molecular weight loss of the residual lignin in the treated wood and in the lignin fractions isolated from the prehydrolysate. The aryl-ether cleavage is coupled with a strong increase in phenolic hydroxyl groups and a decrease in aliphatic hydroxyl groups. Indication for condensation reactions were found by NMR spectroscopy.
A broad variety of regenerated cellulose fibres was subjected to single fibre tensile tests in order to determine the modulus of elasticity, tensile strength, and failure strain. The results were compared to glass fibres and flax fibres, which are considered the most important technical and natural fibres, respectively. With regard to their modulus of elasticity and tensile strength, regenerated cellulose fibres showed clearly lower values than glass fibres, even when their low density was taken into account. The average modulus of elasticity and tensile strength of regenerated cellulose fibres was also lower than the values measured for flax fibres, but when variability was considered, both fibres performed similarly. In terms of interfacial shear strength with polypropylene, lyocell fibres performed significantly less well than sized glass fibre and ramie fibre. The most important difference between regenerated cellulose fibres and both glass and flax fibres is their high failure strain and thus high work to fracture. The high work to fracture of regenerated cellulose fibres makes them particularly useful for composite applications where high fracture toughness is required.
Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.