Schmallenberg virus (SBV) is a novel Orthobunyavirus within the family Bunyaviridae belonging to the Simbu serogroup. Schmallenberg virus infects ruminants and has since its discovery in the autumn 2011 been detected/spread to large parts of Europe. Most bunyaviruses are arboviruses, and SBV has been detected in biting midges in different European countries, suggesting that they may play a role in the transmission of the virus. It is not known how SBV was introduced to Europe and if SBV is present in countries outside of Europe. Thus, in this study, we conducted a serological screening for SBV antibodies in cattle (no. 79), sheep (no. 145) and goat (no. 141) in the Zambezia Province in Mozambique during September 2013. The results show a high percentage of antibody-positive animals. All farms tested had seropositive animals; cattle displayed the highest prevalence with 100% positive animals. Sheep and goat also displayed high number of positive animals with a 43–97% and 72–100% within-herd seroprevalence, respectively. This initial serological screening suggests that SBV is present on the African continent. However, cross-reactivity with other members of the Simbu serogroup cannot be ruled out, and further studies are needed to identify and characterize the virus responsible for the antibody-positive results.
Background: Congenital tremor (CT) type A-II is a neurological disorder characterized by tremor of the head and body of newborn piglets. The suggested causative agent of the disease is the recently found atypical porcine pestivirus (APPV). The virus has been detected in piglets suffering from congenital tremor in central Europe, South and North America and in China but no studies has so far been performed in the Nordic countries. The overarching goal of this study was to investigate if APPV is present in the brain tissue of Swedish piglets suffering from congenital tremor. From June 2017-June 2018, 15 piglets from four Swedish farms with ongoing outbreaks of congenital tremor and 13 piglets with splay leg originating from four different farms, were investigated for presence of APPV RNA in brain tissue. Matched healthy control piglets (n = 8) were also investigated. Two APPV-specific RT-qPCR methods targeting the NS3 and NS5B region, respectively, were used. A retrospective study was performed on material from Swedish piglets with congenital tremor sampled in 2004 (n = 11) and 2011/2012 (n = 3) using the described APPVspecific RT-qPCR methods. The total number of piglets with signs of CT in this study was 29. Results: Atypical porcine pestivirus-RNA was detected in 93% (27/29) of the piglets suffering from congenital tremor. All piglets with congenital tremor from 2004 (n = 11) and 2012 (n = 3) were PCR-positive with respect to APPV, whereas, all of the healthy controls (n = 11) were negative. The piglets with congenital tremor sampled 2017-2018 had an odds ratio of 91.8 (95% CI 3.9128 to 2153.7842, z = 2.807, P = 0.0050) to test positive for APPV by qRT-PCR compared to the healthy piglets (Fishers exact test p < 0.0001). These findings make it interesting to continue investigating APPV in the Swedish pig-population. Conclusion: This is the first description of atypical porcine pestivirus in piglets suffering from congenital tremor type A-II in Sweden and the Nordic countries. The virus has been present in the Swedish pig population since at least 2004.
Congenital tremor (CT) is a neurological disease that affects new-born piglets. It was described in 1922 and six different forms, designated type AI-V and type B, are described based on the causative agents, as well as specific histological findings in the central nervous system (CNS). The various forms present with identical clinical signs consisting of mild to severe tremor of the head and body, sometimes complicated with ataxia. By definition, all A-forms have hypomyelination of the CNS, whereas there are no histopathological lesions with the B-form. The cause of the A-II form was long unknown, however, at present several different viruses have been proposed as the causative agent: porcine circovirus-II (PCV-II), astrovirus, PCV-like virus P1, and atypical porcine pestivirus (APPV). Currently, APPV is the only virus that has been proven to fulfill Mokili's Metagenomic Koch's Postulates. Following infection of the pregnant sow, the virus passes the placental barrier and infects the fetus. Interestingly, no clinical signs of disease have been associated with APPV in adult pigs. Furthermore, other viruses cannot be ruled out as additional potential causes of CT. Given the increased interest and research in CT type A-II, the aim of this review is to summarize current knowledge.
BackgroundThe Rift Valley fever virus (RVFV) is a vector-borne virus that causes disease in ruminants, but it can also infect humans. In humans, the infection can be asymptomatic but can also lead to illness, ranging from a mild disease with fever, headache and muscle pain to a severe disease with encephalitis and haemorrhagic fever. In rare cases, death can occur. In infected animals, influenza-like symptoms can occur, and abortion and mortality in young animals are indicative of RVFV infection. Since the initial outbreak in Kenya in the 1930s, the virus has become endemic to most of sub-Saharan Africa. In 2000, the virus appeared in Yemen and Saudi Arabia; this was the first outbreak of RVF outside of Africa. Rift Valley fever epidemics are often connected to heavy rainfall, leading to an increased vector population and spread of the virus to animals and/or humans. However, the virus needs to be maintained during the inter-epidemic periods. In this study, we investigated the circulation of RVFV in small ruminants (goats and sheep) in Zambézia, Mozambique, an area with a close vector/wildlife/livestock/human interface.Materials and methodsBetween September and October 2013, 181 sheep and 187 goat blood samples were collected from eight localities in the central region of Zambézia, Mozambique. The samples were analysed for the presence of antibodies against RVFV using a commercial competitive ELISA.Results and discussionThe overall seroprevalence was higher in sheep (44.2%) than goats (25.1%); however, there was a high variation in seroprevalence between different localities. The data indicate an increased seroprevalence for sheep compared to 2010, when a similar study was conducted in this region and in overlapping villages. No noticeable health problems in the herds were reported.ConclusionsThis study shows an inter-epidemic circulation of RVFV in small ruminants in Zambézia, Mozambique. Neither outbreaks of RVF nor typical clinical signs of RVFV have been reported in the investigated herds, indicating subclinical infection.
The recently identified causative agent of congenital tremor in domestic piglets, atypical porcine pestivirus (APPV), was detected in serum from Swedish wild boar. A previous study from Sweden described APPV in domestic piglets suffering from congenital tremor, but the APPV situation in the wild boar population was unknown. In this study, 595 serum samples from wild boar originating from 13 counties in the south and central parts of Sweden, collected between 2000 and 2018, were analysed for the presence of the APPV‐genome and for antibodies against the APPV‐glycoprotein Erns. The results revealed that APPV is highly abundant in the Swedish wild boar population; 12% (73/595) were APPV‐genome positive in serum and 72% (433/595) of the tested wild boars displayed APPV‐specific antibodies. The present study also shows that APPV has been present in the Swedish wild boar population since at least the year 2000. The viral sequences obtained from the wild boars were highly similar to those obtained from Swedish domestic pigs positive for APPV and suffering from congenital tremor, suggesting a viral exchange between wild boars and domestic pigs. The high proportion of viraemic and seropositive wild boar is indicative of wild boar being an important reservoir for APPV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.