Memantine hydrochloride is one of the first novel class medications for treatment of Alzheimer's disease. In this work, a biomimetic potentiometric sensor, based on a non-covalent imprinted polymer, was fabricated for the recognition and determination of memantine in pure drug and tablet pharmaceutical form. The molecularly imprinted polymer was synthesized by precipitation polymerization, using memantine hydrochloride as a template molecule, methacrylic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking agent. The sensor was developed by dispersing the memantine imprinted polymer particles in dibutyl sebacate plasticizer and embedding in poly(vinyl chloride) matrix. The wide linear range (10(-5) -10(-1) M), with a near Nernstian response of 57.4 mV/decade, a limit of detection 6.0 × 10(-6) M, fast response time (~15 s) and a satisfactory long-term stability (4 months) are characterizations of the proposed sensor. The sensor showed a high selectivity and a sensitive response to the template in aqueous system. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. It was used as indicator electrode in potentiometric determination of memantine in pharmaceutical formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.