The epithelial-mesenchymal transition (EMT) comprises an essential biological process involving cancer progression as well as initiation. While the EMT has been regarded as a phenotypic conversion from epithelial to mesenchymal cells, recent evidence indicates that it plays a critical role in stemness, metabolic reprogramming, immune evasion and therapeutic resistance of cancer cells. Interestingly, several transcriptional repressors including Snail (SNAI1), Slug (SNAI2) and the ZEB family constitute key players for EMT in cancer as well as in the developmental process. Note that the dynamic conversion between EMT and epithelial reversion (mesenchymal-epithelial transition, MET) occurs through variable intermediate-hybrid states rather than being a binary process. Given the close connection between oncogenic signaling and EMT repressors, the EMT has emerged as a therapeutic target or goal (in terms of MET reversion) in cancer therapy. Here we review the critical role of EMT in therapeutic resistance and the importance of EMT as a therapeutic target for human cancer.
Astaxanthin is a carotenoid with antioxidant, anti-cancer and anti-inflammatory properties. The pharmacokinetics of astaxanthin after its intravenous (5, 10, and 20 mg/kg) and oral (100 and 200 mg/kg) administration and its first-pass extraction ratios after its intravenous, intraportal or intragastric (20 mg/kg) administration were evaluated in rats. The pharmacokinetic parameters of astaxanthin were dose dependent after its intravenous administration, due to the saturable hepatic metabolism of astaxanthin, but dose independent after oral administration. The gastrointestinal absorption of astaxanthin followed the flip-flop model. The hepatic and gastrointestinal first-pass extraction ratios of astaxanthin were approximately 0·490 and 0·901, respectively. Astaxanthin was metabolised primarily by hepatic cytochrome P-450 1A1/2 in rats. Astaxanthin was unstable up to 4 h incubation in four rat gastric juices and up to 24 h incubation in various buffer solutions having a pH of 1 -13. The tissue/plasma ratios of astaxanthin at 8 and 24 h after its oral administration (100 mg/kg) were greater than unity for all tissues studied, except in the heart, at 8 h, indicating that the rat tissues studied had high affinity for astaxanthin.
Phosphorylation-dependent YAP translocation is a well-known intracellular mechanism of the Hippo pathway; however, the molecular effectors governing YAP cytoplasmic translocation remains undefined. Recent findings indicate that oncogenic YAP paradoxically suppresses Wnt activity. Here, we show that Wnt scaffolding protein Dishevelled (DVL) is responsible for cytosolic translocation of phosphorylated YAP. Mutational inactivation of the nuclear export signal embedded in DVL leads to nuclear YAP retention, with an increase in TEAD transcriptional activity. DVL is also required for YAP subcellular localization induced by E-cadherin, α-catenin, or AMPK activation. Importantly, the nuclear-cytoplasmic trafficking is dependent on the p53-Lats2 or LKB1-AMPK tumor suppressor axes, which determine YAP phosphorylation status. In vivo and clinical data support that the loss of p53 or LKB1 relieves DVL-linked reciprocal inhibition between the Wnt and nuclear YAP activity. Our observations provide mechanistic insights into controlled proliferation coupled with epithelial polarity during development and human cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.