The epithelial-mesenchymal transition (EMT) comprises an essential biological process involving cancer progression as well as initiation. While the EMT has been regarded as a phenotypic conversion from epithelial to mesenchymal cells, recent evidence indicates that it plays a critical role in stemness, metabolic reprogramming, immune evasion and therapeutic resistance of cancer cells. Interestingly, several transcriptional repressors including Snail (SNAI1), Slug (SNAI2) and the ZEB family constitute key players for EMT in cancer as well as in the developmental process. Note that the dynamic conversion between EMT and epithelial reversion (mesenchymal-epithelial transition, MET) occurs through variable intermediate-hybrid states rather than being a binary process. Given the close connection between oncogenic signaling and EMT repressors, the EMT has emerged as a therapeutic target or goal (in terms of MET reversion) in cancer therapy. Here we review the critical role of EMT in therapeutic resistance and the importance of EMT as a therapeutic target for human cancer.
The epithelial to mesenchymal transition (EMT) that occurs during embryonic development has begun to attract attention as a potential mechanism for tumor cell metastasis. Snail is a well-known Zn-finger transcription factor that promotes EMT by repressing E-cadherin expression. It is known that Snail is phosphorylated by GSK3b and degraded by b-TrCP-mediated ubiquitination. Here we described another protein kinase, CK1, whose phosphorylation of Snail is required for the subsequent GSK3b phosphorylation. Specific inhibition or depletion of CK1e inhibits the phosphorylation and degradation of Snail and promotes cell migration, suggesting a central role of CK1e in the EMT process. Furthermore, our study uncovered distinct roles and steps of Snail phosphorylation by CK1e and GSK3b. Taken together, we identified CK1e as a new component of the Snail-mediated EMT process, providing insight into the mechanism of human cancer metastasis.
Reciprocal interactions between cancer cells and the tumor microenvironment drive multiple clinically significant behaviors including dormancy, invasion, and metastasis as well as therapy resistance. These microenvironment-dependent phenotypes share typical characteristics with cancer stem cells (CSC). However, it is poorly understood how metabolic stress in the confined tumor microenvironment contributes to the emergence and maintenance of CSC-like phenotypes. Here, we demonstrate that chronic metabolic stress (CMS) in a long-term nutrient deprivation induces a Wnt-dependent phenoconversion of non-stem cancer cells toward stem-like state and this is reflected in the transcriptome analysis. Addition of Wnt3a as well as transfection of dominant-negative Tcf4 establishes an obligatory role for the Wnt pathway in the acquisition of CSC-like characteristics in response to metabolic stress. Furthermore, systematic characterization for multiple single cell-derived clones and negative enrichment of CD44+/ESA+ stem-like cancer cells, all of which recapitulate stem-like cancer characteristics, suggest stochastic adaptation rather than selection of pre-existing subclones. Finally, CMS in the tumor microenvironment can drive a CSC-like phenoconversion of non-stem cancer cells through stochastic state transition dependent on the Wnt pathway. These findings contribute to an understanding of the metabolic stress-driven dynamic transition of non-stem cancer cells to a stem-like state in the tumor metabolic microenvironment.
MicroRNA-210 (miR-210) is a robust target for hypoxia-inducible factor, and its overexpression has been detected in a variety of solid tumors. However, the role of miR-210 in the development, progression and response to therapy in cholangiocarcinoma (CCA) remains undefined. We report here that high miR-210 expression was significantly correlated with the shorter survival of CCA patients. Overexpression of miR-210 inhibited CCA cell proliferation at the G2/M phase and reduced the gemcitabine sensitivity in CCA cells under CoCl2-induced pseudohypoxia. Concomitantly, inhibition of endogenous miR-210 activity using miRNA sponges increased cell proliferation under CoCl2-induced pseudohypoxia, resulting in an increase in gemcitabine sensitivity in CCA cells. We showed that HIF-3α, a negative controller of HIF-1α, was a target of miR-210 constituting a feed-forward hypoxic regulatory loop. Our data suggest an important role of miR-210 in sustaining HIF-1α activity via the suppression of HIF-3α, regulating cell growth and chemotherapeutic drug resistance in CCA.
As highly conserved signaling cascades of multicellular organisms, Wnt and Hippo pathways control a wide range of cellular activities, including cell adhesion, fate determination, cell cycle, motility, polarity, and metabolism. Dysregulation of those pathways are implicated in many human diseases, including cancer. Similarly to β-catenin in the Wnt pathway, the YAP transcription co-activator is a major player in Hippo. Although the intracellular dynamics of YAP are well-known to largely depend on phosphorylation by LATS and AMPK kinases, the molecular effector of YAP cytosolic translocation remains unidentified. Recently, we reported that the Dishevelled (DVL), a key scaffolding protein between canonical and non-canonical Wnt pathway, is responsible for nuclear export of phosphorylated YAP. The DVL is also required for YAP intracellular trafficking induced by E-cadherin, α-catenin, or metabolic stress. Note that the p53/LATS2 and LKB1/AMPK tumor suppressor axes, commonly inactivated in human cancer, govern the reciprocal inhibition between DVL and YAP. Conversely, loss of the tumor suppressor allows co-activation of YAP and Wnt independent of epithelial polarity or contact inhibition in human cancer. These observations provide novel mechanistic insight into (1) a tight molecular connection merging the Wnt and Hippo pathways, and (2) the importance of tumor suppressor contexts with respect to controlled proliferation and epithelial polarity regulated by cell adhesion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.