The territory of present-day Vietnam was the cradle of one of the world’s earliest civilizations, and one of the first world regions to develop agriculture. We analyzed the mitochondrial DNA (mtDNA) complete control region of six ethnic groups and the mitogenomes from Vietnamese in The 1000 Genomes Project (1000G). Genome-wide data from 1000G (~55k SNPs) were also investigated to explore different demographic scenarios. All Vietnamese carry South East Asian (SEA) haplotypes, which show a moderate geographic and ethnic stratification, with the Mong constituting the most distinctive group. Two new mtDNA clades (M7b1a1f1 and F1f1) point to historical gene flow between the Vietnamese and other neighboring countries. Bayesian-based inferences indicate a time-deep and continuous population growth of Vietnamese, although with some exceptions. The dramatic population decrease experienced by the Cham 700 years ago (ya) fits well with the Nam tiến (“southern expansion”) southwards from their original heartland in the Red River Delta. Autosomal SNPs consistently point to important historical gene flow within mainland SEA, and add support to a main admixture event occurring between Chinese and a southern Asian ancestral composite (mainly represented by the Malay). This admixture event occurred ~800 ya, again coinciding with the Nam tiến.
Here we report a comprehensive analysis of the vomeronasal receptor repertoire in pigs. We identified a total of 25 V1R sequences consisting of 10 functional genes, 3 pseudogenes, and 12 partial genes, while functional V2R and FPR genes were not present in the pig genome. Pig V1Rs were classified into three subfamilies, D, F, and J. Using direct high resolution sequencing-based typing of all functional V1Rs from 10 individuals of 5 different breeds, a total of 24 SNPs were identified, indicating that the allelic diversity of V1Rs is much lower than that of the olfactory receptors. A high expression level of V1Rs was detected in the vomeronasal organ (VNO) and testes, while a low expression level of V1Rs was observed in all other tissues examined. Our results showed that pigs could serve as an interesting large animal model system to study pheromone-related neurobiology because of their genetic simplicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.