Abstract Small horizontal axis wind turbine rotors with composite airfoil rotor blades were designed and investigated in the present study in order to improve its performance in low wind speed and low Reynolds number (Re) conditions for standalone system. The geometrical and aerodynamic nature of a single airfoil small horizontal axis wind turbine blade curtails efficient energy harnessing of the rotor blade. The use of composite airfoil rotor blade improves energy production but imposes uncertainty in determining an optimal design angle of attack and the off design aerodynamic behaviour of the rotor. This research investigated the effects of two airfoils used at different sections in a composite blade and determined the blade’s optimal design angle of attack for maximum power generation. The wind turbine rotor blades were designed using blade element momentum (BEM) method and modelled by SolidWorks software. The SG6042 and SG6043 airfoils were used for the composite airfoil blades. Five wind turbines were designed with rotor blades of design angles of attack from 3° to 7°. The five wind turbine blades were simulated in computational fluid dynamics to determine the optimal design angle of attack. The composite airfoil wind turbine blade showed improved performance, whereas, the wind power generated ranged from 4966 W to 5258 W and rotor power coefficients ranged from 0.443 to 0.457. The blade with design angle of attack of 6° showed highest performance. Keywords: composite airfoil, lift-to-drag ratio, pressure coefficient, Reynolds number, design angle of attack.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.