BackgroundThe impacts of social restrictions for COVID-19 on children’s vision and lifestyle remain unknown.AimsTo investigate myopia incidence, spherical equivalent refraction (SER) and lifestyle changes among schoolchildren during the COVID-19 pandemic.MethodsTwo separate longitudinal cohorts of children aged 6–8 years in Hong Kong were included. The COVID-19 cohort was recruited at the beginning of the COVID-19 outbreak, whereas the pre-COVID-19 cohort was recruited before the COVID-19 pandemic. All children received ocular examinations, and answered a standardised questionnaire relating to their lifestyle, including time spent on outdoor activities and near work, both at baseline and at follow-up visits.ResultsA total of 1793 subjects were recruited, of whom 709 children comprised the COVID-19 cohort with 7.89±2.30 months of follow-up, and 1084 children comprised the pre-COVID-19 cohort with 37.54±3.12 months of follow-up. The overall incidence was 19.44% in the COVID-19 cohort, and 36.57% in pre-COVID-19 cohort. During the COVID-19 pandemic, the change in SER and axial length was –0.50±0.51 D and 0.29±0.35 mm, respectively; the time spent on outdoor activities decreased from 1.27±1.12 to 0.41±0.90 hours/day (p<0.001), while screen time increased from 2.45±2.32 to 6.89±4.42 hours/day (p<0.001).ConclusionsWe showed a potential increase in myopia incidence, significant decrease in outdoor time and increase in screen time among schoolchildren in Hong Kong during the COVID-19 pandemic. Our results serve to warn eye care professionals, and also policy makers, educators and parents, that collective efforts are needed to prevent childhood myopia—a potential public health crisis as a result of COVID-19.
The contributory roles of vitamin D in ocular and visual health have long been discussed, with numerous studies pointing to the adverse effects of vitamin D deficiency. In this paper, we provide a systematic review of recent findings on the association between vitamin D and different ocular diseases, including myopia, age-related macular degeneration (AMD), glaucoma, diabetic retinopathy (DR), dry eye syndrome (DES), thyroid eye disease (TED), uveitis, retinoblastoma (RB), cataract, and others, from epidemiological, clinical and basic studies, and briefly discuss vitamin D metabolism in the eye. We searched two research databases for articles examining the association between vitamin D deficiency and different ocular diseases. One hundred and sixty-two studies were found. There is evidence on the association between vitamin D and myopia, AMD, DR, and DES. Overall, 17 out of 27 studies reported an association between vitamin D and AMD, while 48 out of 54 studies reported that vitamin D was associated with DR, and 25 out of 27 studies reported an association between vitamin D and DES. However, the available evidence for the association with other ocular diseases, such as glaucoma, TED, and RB, remains limited.
This study aims to investigate the effect of age on the peripapillary retinal nerve fiber layer (p-RNFL) thickness among schoolchildren. A total of 4034 children aged 6–8 years old received comprehensive ophthalmological examinations. p-RNFL thickness was measured from a circular scan (⌀ = 3.4 mm) captured using spectral-domain optical coherence tomography (SD-OCT). Associations between p-RNFL thickness with ocular and systemic factors were determined by multivariate linear regression after adjusting potential confounders using generalized estimating equations (GEE). The mean global p-RNFL thickness was 106.60 ± 9.41 μm (range: 72 to 171 μm) in the right eyes, 105.99 ± 9.30 μm (range: 76 to 163 μm) in the left eyes, and 106.29 ± 9.36 μm (range: 72 to 171 μm) across both eyes. Age was positively correlated with p-RNFL after adjusting for axial length (AL) and confounding factors (β = 0.509; p = 0.001). Upon multivariable analysis, AL was positively associated with temporal p-RNFL thickness (β = 3.186, p < 0.001) but negatively with non-temporal p-RNFL thickness (β = (10.003, −2.294), p < 0.001). Sectoral p-RNFL was the thickest in the inferior temporal region (155.12 ± 19.42 μm, range 68 to 271 μm), followed by the superior temporal region (154.67 ± 19.99 μm, range 32 to 177 μm). To conclude, p-RNFL increased significantly with older age among children 6 to 8 years old in a converse trend compared to adults. Our results provide a reference for interpreting OCT information in children and suggest that stable p-RNFL thickness may not indicate a stable disease status in pediatric patients due to the age effects.
Introduction: This study aimed to evaluate the habitual reading distance among non-myopic children and also myopic children with undercorrection and with full correction. Methods: This was a population-based crosssectional study with a total of 2363 children aged 6-8 years who were recruited from the Hong Kong Children Eye Study. Cycloplegic autorefraction, subjective refraction, habitual visual acuity, and best corrected visual acuity were measured. The entire reading process (9 min) was recorded using a hidden video camera placed 5 m away from the reading desk. Reading distances were taken at 6, 7, 8, and 9 min after the child began reading and were measured using a customized computer program developed in MATLAB. The main outcome was the association of habitual reading distances with refraction status. Habitual reading distances of children were documented via
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.