Quinolones, which target gyrase and topoisomerase IV, are the most widely prescribed antibacterials worldwide. Unfortunately, their use is threatened by the increasing prevalence of target-mediated drug resistance. Greater than 90% of mutations that confer quinolone resistance act by disrupting enzyme-drug interactions coordinated by a critical water-metal ion bridge. Quinazolinediones are quinolone-like drugs, but lack the skeletal features necessary to support the bridge interaction. These compounds are of clinical interest, however, because they retain activity against the most common quinolone resistance mutations. We utilized a chemical biology approach to determine how quinazolinediones overcome quinolone resistance in Bacillus anthracis topoisomerase IV. Quinazolinediones that retain activity against quinolone-resistant topoisomerase IV do so primarily by establishing novel interactions through the C7 substituent, rather than the drug skeleton. Because some quinolones are highly active against human topoisomerase IIα, we also determined how clinically relevant quinolones discriminate between the bacterial and human enzymes. Clinically relevant quinolones display poor activity against topoisomerase IIα because the human enzyme cannot support drug interactions mediated by the water-metal ion bridge. However, the inclusion of substituents that allow quinazolinediones to overcome topoisomerase IV-mediated quinolone resistance can cause cross-reactivity against topoisomerase IIα. Therefore, a major challenge in designing drugs that overcome quinolone resistance lies in the ability to identify substituents that mediate strong interactions with the bacterial, but not the human, enzymes. Based on our understanding of quinolone-enzyme interactions, we have identified three compounds that display high activity against quinolone-resistant B. anthracis topoisomerase IV but low activity against human topoisomerase IIα.
Bacterial resistance presents a difficult issue for fluoroquinolone treatment of bacterial infections. In previous work, we reported that 8-methoxy-quinazoline-2,4-diones are active against quinolone-resistant mutants of Escherichia coli. Here, we demonstrate the activity of a representative 8-methoxy-quinazoline-2,4-dione against quinolone-resistant gyrases. Furthermore, 8-methoxy-quinazoline-2,4-dione and other diones are shown to inhibit Staphylococcus aureus gyrase and topoisomerase IV with similar degrees of efficacy, suggesting that the diones might act as dual-targeting agents against S. aureus.Antibiotic resistance is among the most difficult problems we currently face during the treatment of bacterial infections (10, 32). The fluoroquinolones are among the antibacterials affected by resistance, which can severely limit their clinical use (1, 6, 29). Thus, there is an urgent need to develop antimicrobial agents that are effective against drug-resistant pathogens. Two properties of quinolone-like compounds are likely to be useful for finding effective derivatives: (i) activity against quinolone-resistant mutants already present (12) and (ii) equal effectiveness against the two quinolone targets, DNA gyrase and topoisomerase IV (Topo IV) (dual-targeting agents; dual-targeting agents are expected to slow the emergence of drug-resistant mutants [4,19,23,26,31]). The presence of an 8-methoxy group (5, 22, 33) and changing the quinolone core structure to either quinazoline-2,4-dione (2, 8, 18) or pyrido[1,2-c]pyrimidine-1,3-dione (UI7) improve the activity of fluoroquinolone-like compounds against fluoroquinoloneresistant bacteria. We recently identified 8-methoxy-quinazoline-2,4-diones that show little increase in MIC due to gyrA or gyrB quinolone resistance mutations of Escherichia coli (12). To establish that this activity against mutant bacteria is due to improved activity against gyrase, we examined the activity of a representative 8-methoxy-quinazoline-2,4-dione (UING5-207; 8-methoxy 2,4-dione) with purified gyrase. We also assessed its effect on the activity of purified Topo IV to determine whether the in vivo results were likely due to a target switch. Furthermore, to better understand how dione structure influences target selection, we compared the effectiveness of diones for inhibition of catalytic activities of Staphylococcus aureus and E. coli topoisomerases.Based on MIC values determined in previous work (12), we selected three mutant gyrases, GyrA S83W gyrase, GyrA G81C gyrase, and GyrA A67S gyrase, as examples exhibiting high, moderate, and low levels of quinolone resistance in vivo. Mutations were introduced into the E. coli gyrA gene using the overlap extension PCR technique (17), and subunits of E. coli and S. aureus gyrases and Topo IVs were expressed and purified. The active enzymes were reconstituted as described previously (13)(14)(15)(16)28). In vitro activities of the 8-methoxy 2,4-dione were compared with those of a cognate 8-methyl-quinazoline-2,4-dione (UIJR1-048; 8-methyl 2,4-dione)...
Mutations in AGXT, a locus mapped to 2q37.3, cause deficiency of liver-specific alanine:glyoxylate aminotransferase (AGT), the metabolic error in type 1 primary hyperoxaluria (PH1). Genetic analysis of 55 unrelated probands with PH1 from the Mayo Clinic Hyperoxaluria Center, to date the largest with availability of complete sequencing across the entire AGXT coding region and documented hepatic AGT deficiency, suggests that a molecular diagnosis (identification of two disease alleles) is feasible in 96% of patients. Unique to this PH1 population was the higher frequency of G170R, the most common AGXT mutation, accounting for 37% of alleles, and detection of a new 3 end deletion (Ex 11_3UTR del). A described frameshift mutation (c.33_34insC) occurred with the next highest frequency (11%), followed by F152I and G156R (frequencies of 6.3 and 4.5%, respectively), both surpassing the frequency (2.7%) of I244T, the previously reported third most common pathogenic change. These sequencing data indicate that AGXT is even more variable than formerly believed, with 28 new variants (21 mutations and seven polymorphisms) detected, with highest frequencies on exons 1, 4, and 7. When limited to these three exons, molecular analysis sensitivity was 77%, compared with 98% for whole-gene sequencing. These are the first data in support of comprehensive AGXT analysis for the diagnosis of PH1, obviating a liver biopsy in most well-characterized patients. Also reported here is previously unavailable evidence for the pathogenic basis of all AGXT missense variants, including evolutionary conservation data in a multisequence alignment and use of a normal control population.
CP-115,955 is a quinolone with a 4-hydroxyphenyl at C7 that displays high activity against both bacterial and human type II topoisomerases. To determine the basis for quinolone cross-reactivity between bacterial and human enzymes, the activity of CP-115,955 and a series of related quinolones and quinazolinediones against Bacillus anthracis topoisomerase IV and human topoisomerase IIα was analyzed. Results indicate that the activity of CP-115,955 against the bacterial and human enzymes is mediated by different interactions. Based on the decreased activity of quinazolinediones against wild-type and resistant mutant topoisomerase IV and the low activity of quinolones against resistant mutant enzymes, it appears that the primary interaction of CP-115,955 with the bacterial system is mediated through the C3/C4 keto acid and the water-metal ion bridge. In contrast, the drug interacts with the human enzyme primarily through the C7 4-hydroxyphenyl ring and has no requirement for a substituent at C8 in order to attain high activity. Despite the fact that the human type II enzyme is unable to utilize the water-metal ion bridge, quinolones in the CP-115,955 series display higher activity against topoisomerase IIα in vitro and in cultured human cells than the corresponding quinazolinediones. Thus, quinolones may be a viable platform for the development of novel drugs with anticancer potential.
Fluoroquinolones form drug-topoisomerase-DNA complexes that rapidly block transcription and replication. Crystallographic and biochemical studies show that quinolone binding involves a water/metal-ion bridge between the quinolone C3-C4 keto-acid and amino acids in helix-4 of the target proteins, GyrA (gyrase) and ParC (topoisomerase IV). A recent cross-linking study revealed a second drug-binding mode in which the other end of the quinolone, the C7 ring system, interacts with GyrA. We report that addition of a dinitrophenyl (DNP) moiety to the C7 end of ciprofloxacin (Cip-DNP) reduced protection due to resistance substitutions in Escherichia coli GyrA helix-4, consistent with the existence of a second drug-binding mode not evident in X-ray structures of drug-topoisomerase-DNA complexes. Several other C7 aryl fluoroquinolones behaved in a similar manner with particular GyrA mutants. Treatment of E. coli cultures with Cip-DNP selectively enriched an uncommon variant, GyrA-A119E, a change that may impede binding of the dinitrophenyl group at or near the GyrA-GyrA interface. Collectively the data support the existence of a secondary quinolone-binding mode in which the quinolone C7 ring system interacts with GyrA; the data also identify C7 aryl derivatives as a new way to obtain fluoroquinolones that overcome existing GyrA-mediated quinolone resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.