AimsAmong people with diabetes, 10–25% will experience a foot ulcer. Research has shown that supplementation with arginine, glutamine and β-hydroxy-β-methylbutyrate may improve wound repair. This study tested whether such supplementation would improve healing of foot ulcers in persons with diabetes.MethodsAlong with standard of care, 270 subjects received, in a double-blinded fashion, (twice per day) either arginine, glutamine and β-hydroxy-β-methylbutyrate or a control drink for 16 weeks. The proportion of subjects with total wound closure and time to complete healing was assessed. In a post-hoc analysis, the interaction of serum albumin or limb perfusion, as measured by ankle–brachial index, and supplementation on healing was investigated.ResultsOverall, there were no group differences in wound closure or time to wound healing at week 16. However, in subjects with an albumin level of ≤ 40 g/l and/or an ankle–brachial index of < 1.0, a significantly greater proportion of subjects in the arginine, glutamine and β-hydroxy-β-methylbutyrate group healed at week 16 compared with control subjects (P = 0.03 and 0.008, respectively). Those with low albumin or decreased limb perfusion in the supplementation group were 1.70 (95% CI 1.04–2.79) and 1.66 (95% CI 1.15–2.38) times more likely to heal.ConclusionsWhile no differences in healing were identified with supplementation in non-ischaemic patients or those with normal albumin, addition of arginine, glutamine and β-hydroxy-β-methylbutyrate as an adjunct to standard of care may improve healing of diabetic foot ulcers in patients with risk of poor limb perfusion and/or low albumin levels. Further investigation involving arginine, glutamine and β-hydroxy-β-methylbutyrate in these high-risk subgroups might prove clinically valuable.
The distribution of amino acids between plasma, liver and brain was studied in adult male rats, fed a diet containing 8.7, 17 (control animals), 32 and 51 % of protein during 15 days. The caloric intake was nearly equal in all groups. The highest food intake was observed in the animals on the low protein diet. Changes in plasma amino acids were variable. In contrast to the behavior of most amino acids in plasma, the branched chain amino acids were highest in the animals fed the 51 % protein diet. Despite the low protein intake in the animals fed a 8.7 % protein diet, the concentration of serine, glutamic acid, glutamine, glycine, alanine, methionine, isoleucine, leucine, phenylalanine and ornithine were significantly higher compared to control animals, whereas in those receiving a high protein diet, valine, leucine, tyrosine, tryptophan and histidine increased in relation to the increased protein and amino acid intake. The plasma amino acid patterns are not greatly influenced by the amino acid distribution in the food and the amount ingested. Alanine aminotransferase, aspartate aminotransferase, glutamate dehydrogenase and cholinesterase showed a two- to fivefold increased activity in the liver of animals consuming a high protein diet. In the brain, the concentration of valine, leucine, isoleucine, phenylalanine and tyrosine in animals receiving the low protein diet was higher than in controls and increased further with increasing protein content of the diet. Glutamine was increased in all dietary groups. The predicted influx of amino acids showed increasing influx rates in dependence of the plasma amino acid concentration. The entry of tyrosine and tryptophan and their brain concentration was inversely proportional to the protein content of the diet. In the present study which considers long-term adaptation to an increasing protein and amino acid intake in comparison to a balanced control protein diet, the levels of the indispensable amino acids were maintained within narrow limits in the brain and liver. The results indicate that inspite of a variable protein intake, the body tends to keep organ amino acids in relatively narrow limits favoring in this way amino acid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.