Bioactive peptides from pea protein could be applied as functional ingredients for protecting infants and children against infections such as H. pylori.
We aimed to determine the effects of enteral supplementation of a prebiotic mixture of neutral and acidic oligosaccharides (scGOS/lcFOS/pAOS) on the faecal microbiota and microenvironment in preterm infants. Furthermore, we determined the influence of perinatal factors on the development of the faecal microbiota. In a randomised controlled trial, preterm infants with gestational age <32 weeks and/or birth weight <1,500 g received enteral supplementation of scGOS/lcFOS/pAOS or placebo (maltodextrin) between days 3 and 30 of life. Faecal microbiota, as measured with fluorescent in situ hybridisation (FISH), and microenvironment [short-chain fatty acids (SCFAs), pH, sIgA] were measured at four time points: before the start of the study and at days 7, 14 and 30 of life. In total, 113 preterm infants were included. Enteral supplementation of the prebiotic mixture increased the total bacteria count at day 14 (Exp 3.92; 95 % confidence interval [CI] 1.18-13.04, p = 0.03), but not at day 30 (Exp 1.73; 95 % CI 0.60-5.03, p = 0.31). There was a trend toward increased bifidobacteria counts. There was a delayed intestinal colonisation of all bacteria. Enteral supplementation of the prebiotic mixture decreased the faecal pH (Exp 0.71; 95 % CI 0.54-0.93, p = 0.01) and there was a trend toward increased acetic acid compared to the placebo group (Exp 1.09; 95 % CI 0.99-1.20, p = 0.10). There was no effect on sIgA (Exp 1.94; 95 % CI 0.28-13.27, p = 0.50). Antibiotics decreased the total bacteria count (Exp 0.13; 95 % CI 0.08-0.22, p < 0.001). Enteral supplementation of a prebiotic mixture of neutral and acidic oligosaccharides increases the postnatal intestinal colonisation. However, the extensive use of broad-spectrum antibiotics in preterm infants decreased the growth of all intestinal microbiota, thereby, delaying the normal microbiota development.
Human milk contains complex carbohydrates that are important dietary factors with multiple functions during early life. Several aspects of these glycostructures are human specific; some aspects vary between lactating women, and some change during the course of lactation. This review outlines how variability of complex glycostructures present in human milk is linked to changing infants' needs.
The data of the present study show that oral THR supplementation has a clear plasma-PHE-reducing effect but they do not allow any conclusion about the mechanisms responsible for the observed effect. Although it seems attractive on the basis of the present data to use THR supplementation in patients with hyperphenylalaninemia, the mechanism of the observed effect should be clarified before introduction of such a treatment in these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.