Speech perception in noisy environments is enhanced by seeing facial movements of communication partners. However, the neural mechanisms by which audio and visual speech are combined are not fully understood. We explore MEG phase-locking to auditory and visual signals in MEG recordings from 14 human participants (6 females, 8 males) that reported words from single spoken sentences. We manipulated the acoustic clarity and visual speech signals such that critical speech information is present in auditory, visual, or both modalities. MEG coherence analysis revealed that both auditory and visual speech envelopes (auditory amplitude modulations and lip aperture changes) were phase-locked to 2-6 Hz brain responses in auditory and visual cortex, consistent with entrainment to syllable-rate components. Partial coherence analysis was used to separate neural responses to correlated audio-visual signals and showed non-zero phase-locking to auditory envelope in occipital cortex during audio-visual (AV) speech. Furthermore, phase-locking to auditory signals in visual cortex was enhanced for AV speech compared with audioonly speech that was matched for intelligibility. Conversely, auditory regions of the superior temporal gyrus did not show abovechance partial coherence with visual speech signals during AV conditions but did show partial coherence in visual-only conditions. Hence, visual speech enabled stronger phase-locking to auditory signals in visual areas, whereas phase-locking of visual speech in auditory regions only occurred during silent lip-reading. Differences in these cross-modal interactions between auditory and visual speech signals are interpreted in line with cross-modal predictive mechanisms during speech perception.
In language comprehension, a variety of contextual cues act in unison to render upcoming words more or less predictable. As a sentence unfolds, we use prior context ( sentential constraints ) to predict what the next words might be. Additionally, in a conversation, we can predict upcoming sounds through observing the mouth movements of a speaker ( visual constraints ). In electrophysiological studies, effects of visual constraints have typically been observed early in language processing, while effects of sentential constraints have typically been observed later. We hypothesized that the visual and the sentential constraints might feed into the same predictive process such that effects of sentential constraints might also be detectable early in language processing through modulations of the early effects of visual salience. We presented participants with audiovisual speech while recording their brain activity with magnetoencephalography. Participants saw videos of a person saying sentences where the last word was either sententially constrained or not, and began with a salient or non-salient mouth movement. We found that sentential constraints indeed exerted an early (N1) influence on language processing. Sentential modulations of the N1 visual predictability effect were visible in brain areas associated with semantic processing, and were differently expressed in the two hemispheres. In the left hemisphere, visual and sentential constraints jointly suppressed the auditory evoked field, while the right hemisphere was sensitive to visual constraints only in the absence of strong sentential constraints. These results suggest that sentential and visual constraints can jointly influence even very early stages of audiovisual speech comprehension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.