Auto-antibodies against the paranodal proteins neurofascin-155 and contactin-1 have recently been described in patients with chronic inflammatory demyelinating polyradiculoneuropathy and are associated with a distinct clinical phenotype and response to treatment. Contactin-associated protein 1 (Caspr, encoded by CNTNAP1) is a paranodal protein that is attached to neurofascin-155 and contactin-1 (CNTN1) but has not yet been identified as a sole antigen in patients with inflammatory neuropathies. In the present study, we screened a cohort of 35 patients with chronic inflammatory demyelinating polyradiculoneuropathy (age range 20-80, 10 female, 25 male) and 22 patients with Guillain-Barré syndrome (age range 17-86, eight female, 14 male) for autoantibodies against paranodal antigens. We identified two patients, one with chronic inflammatory demyelinating polyradiculoneuropathy and one with Guillain-Barré syndrome, with autoantibodies against Caspr by binding assays using Caspr transfected human embryonic kidney cells and murine teased fibres. IgG3 was the predominant autoantibody subclass in the patient with Guillain-Barré syndrome, IgG4 was predominant in the patient with chronic inflammatory demyelinating polyradiculoneuropathy. Accordingly, complement deposition after binding to HEK293 cells was detectable in the patient with IgG3 autoantibodies only, not in the patient with IgG4. Severe disruption of the paranodal and nodal architecture was detectable in teased fibres of the sural nerve biopsy and in dermal myelinated fibres, supporting the notion of the paranodes being the site of pathology. Deposition of IgG at the paranodes was detected in teased fibre preparations of the sural nerve, further supporting the pathogenicity of anti-Caspr autoantibodies. Pain was one of the predominant findings in both patients, possibly reflected by binding of patients' IgG to TRPV1 immunoreactive dorsal root ganglia neurons. Our results demonstrate that the paranodal protein Caspr constitutes a new antigen that leads to autoantibody generation as part of the novel entity of neuropathies associated with autoantibodies against paranodal proteins.
In addition to A-beta fibres the human hairy skin has unmyelinated (C) fibres responsive to light touch. Previous functional magnetic resonance imaging (fMRI) studies in a subject with a neuronopathy who specifically lacks A-beta afferents indicated that tactile C afferents (CT) activate insular cortex, whereas no response was seen in somatosensory areas 1 and 2. Psychophysical tests suggested that CT afferents give rise to an inconsistent perception of weak and pleasant touch. By examining two neuronopathy subjects as well as control subjects we have now demonstrated that CT stimulation can elicit a sympathetic skin response. Further, the neuronopathy subjects' ability to localize stimuli which activate CT afferents was very poor but above chance level. The findings support the interpretation that the CT system is well suited to underpin affective rather than discriminative functions of tactile sensations.
Botulinum toxin A (BoNT/A) has been used therapeutically to treat muscular hypercontractions and sudomotor hyperactivity. There is increasing evidence that BoNT/A might also have analgesic properties, in particular in headache. In the present investigation we tested the often cited hypothesis that BoNT/A-induced analgesia can be attributed to inhibition of neuropeptide release from nociceptive nerve fibers. In 15 healthy volunteers BoNT/A (5, 10, 20 mouse units BOTOX) or saline (contralateral side) was injected intracutaneously on the volar forearm. On day zero, the day of injection, no further tests were performed. We repeatedly elicited pain, mechanical hyperalgesia and neurogenic flare by transcutaneous electrical stimulation simultaneously on the BoNT/A and saline treated side on day 1, 2, 3, 7 and 14 after injection. Before each session, sweating and local anhidrosis was assessed by iodine starch staining.BoNT/A suppressed sweating as early as from the second day after injection (p < 0.001). The size of electrically induced flare was smaller on the BoNT/A treated arm (BoNT/A side: 21.46 cm(2) +/- 3.58, saline side 24.80 +/- 3.46, p < 0.005) and BoNT/A reduced electrically-induced pain by about 10 % (p < 0.001). However, hyperalgesia to pin-prick and allodynia after electrical stimulation were unchanged. In conclusion our results indicate that peripheral neuropeptide release is attenuated by BoNT/A. In contrast, the analgesic effect of BoNT/A was very limited. Therefore we assume that other than neuropeptide mechanisms must be important for BoNT/A induced pain relief in clinical pain syndromes.
Background Vestibular paroxysmia (VP) is defined as neurovascular compression (NVC) syndrome of the eighth cranial nerve (N.VIII). The aim was to assess the sensitivity and specificity of MRI and the significance of audiovestibular testing in the diagnosis of VP. Methods 20 VP patients and, for control, 20 subjects with trigeminal neuralgia (TN) were included and underwent MRI (constructive interference in steady-state, time-of-flight MR angiography) for detection of a NVC between N.VIII and vessels. All VP patients received detailed audiovestibular testing. Results A NVC of N.VIII could be detected in all VP patients rendering a sensitivity of 100% and a specificity of 65% for the diagnosis of VP by MRI. Distance between brain stem and compressing vessels varied between 0.0 and 10.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.