Steroids that activate glucocorticoid receptors (GRs) and mineralocorticoid receptors have important regulatory effects on neural development, plasticity, and the body's stress response. Here, we investigated the role of corticosteroids in regulating the expression of the glial glutamate transporters glial glutamate transporter-1 (GLT-1) and glutamate-aspartate transporter (GLAST) in rat primary astrocytes. The synthetic glucocorticoid dexamethasone provoked a marked increase of GLT-1 transcription and protein levels in cortical astrocytes, whereas GLAST expression remained unaffected. Up-regulation of GLT-1 expression was accompanied by an enhanced glutamate uptake, which could be blocked by the specific GLT-1 inhibitor dihydrokainate. The promoting effect of dexamethasone on GLT-1 gene expression and function was abolished by the GR antagonist mifepristone. A predominant role of the GR was further supported by the observation that corticosterone could elevate GLT-1 expression in a dose-dependent manner, whereas aldosterone, the physiological ligand of the mineralocorticoid receptor, exerted only weak effects even when applied at high concentrations. Moreover, we monitored brain region-specific differences, since all corticosteroids used in this study failed to alter the expression of GLT-1 in midbrain and cerebellar glia, although expression levels of both corticosteroid receptor subtypes were similar in all brain regions analyzed. Dexamethasone, however, modestly enhanced GLT-1 expression in cerebellar glia in combination with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, suggesting that suppression of GLT-1 expression in cerebellar cultures may at least in part be epigenetically mediated by a DNA methylation-dependent process. Taken together, our data highlight a potential role for glucocorticoids in regulating GLT-1 gene expression during central nervous system development or pathophysiogical processes including stress. Steroid hormones possessing glucocorticoid (GC)2 or mineralocorticoid (MC) activity exert profound regulatory effects in the central nervous system (1). Being synthesized in the adrenal gland and ultimately secreted into circulation, they penetrate the blood brain barrier and influence neuronal development and plasticity. Moreover, GCs are the main effectors of the hypothalamic-pituitary-adrenal axis and regulate the body's stress response by inducing a variety of physiological changes including mobilization of energy from storage sites and the suppression of parts of the immune system (2). Due to their anti-inflammatory properties, they are administered in the treatment of central nervous system diseases such as edema arising from brain tumors, viral encephalitis, bacterial meningitis, and multiple sclerosis (3).The effects of adrenal steroid hormones (GCs and MCs) are classically mediated through the activation of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) (4, 5), which display a wide distribution in the brain. Corticosterone, cortisol, and aldosteron...
The human enzyme paraoxonase-2 (PON2) has two functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. As a lactonase, it dominantly hydrolyzes bacterial signaling molecule 3OC12 and may contribute to the defense against pathogenic Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 reduces cellular oxidative damage and influences redox signaling, which promotes cell survival. This may be appreciated but also deleterious given that high PON2 levels reduce atherosclerosis but may stabilize tumor cells. Here we addressed the unknown mechanisms and linkage of PON2 enzymatic and anti-oxidative function. We demonstrate that PON2 indirectly but specifically reduced superoxide release from the inner mitochondrial membrane, irrespective whether resulting from complex I or complex III of the electron transport chain. , was critical to its activity. Importantly, none of these mutations altered the anti-oxidative/anti-apoptotic function of PON2, demonstrating unrelated activities of the same protein. Collectively, our study provides detailed mechanistic insight into the functions of PON2, which is important for its role in innate immunity, atherosclerosis, and cancer.
Recent studies provide evidence that wild-type Cu/Zn-superoxide dismutase (SOD1(hWT)) might be an important factor in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). In order to investigate its functional role in the pathogenesis of ALS, we designed fusion proteins of two SOD1 monomers linked by a polypeptide. We demonstrated that wild-type-like mutants, but not SOD1(G85R) homodimers, as well as mutant heterodimers including SOD1(G85R)-SOD1(hWT) display dismutase activity. Mutant homodimers showed an increased aggregation compared with the corresponding heterodimers in cell cultures and transgenic Caenorhabditis elegans, although SOD1(G85R) heterodimers are more toxic in functional assays. Our data show that (i) toxicity of mutant SOD1 is not correlated to its aggregation potential; (ii) dismutase-inactive mutants form dismutase-active heterodimers with SOD1(hWT); (iii) SOD1(hWT) can be converted to contribute to disease by forming active heterodimers. Therefore, we conclude that toxicity of mutant SOD1 is at least partially mediated through heterodimer formation with SOD1(hWT) in vivo and does not correlate with the aggregation potential of individual mutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.