The anaerobic hydrolysis rate of organic solid waste was studied at fixed volatile fatty acid (VFA) concentrations ranging from 3 to 30 g COD/L and fixed pH values between 5 and 7. For separate control of both VFA and pH, a special completely mixed reactor was designed. In this way, it was possible to distinguish between the inhibitory effects of pH, total VFA, and undissociated VFA on anaerobic hydrolysis. It was shown that hydrolysis of the organic solid waste followed first-order kinetics. Using a statistical analysis, it was found that the hydrolysis rate constant was pH dependent but was not related to the total VFA and undissociated VFA concentrations.Note: Calculations were made using average composition of VFA formed during fermentation [acetate:propionate:butyrate:valerate = 0.51: 0.21:0.22:0.06 (g COD/L)] as determined by ten Brummeler et al. (1991) and corresponding dissociation constants of VFA components.
Accounting of greenhouse gas (GHG) emissions from waste landfilling is summarized with the focus on processes and technical data for a number of different landfilling technologies: open dump (which was included as the worst-case-scenario), conventional landfills with flares and with energy recovery, and landfills receiving low-organic-carbon waste. The results showed that direct emissions of GHG from the landfill systems (primarily dispersive release of methane) are the major contributions to the GHG accounting, up to about 1000 kg CO(2)-eq. tonne( -1) for the open dump, 300 kg CO(2)-eq. tonne( -1) for conventional landfilling of mixed waste and 70 kg CO(2)-eq. tonne(-1) for low-organic-carbon waste landfills. The load caused by indirect, upstream emissions from provision of energy and materials to the landfill was low, here estimated to be up to 16 kg CO(2)-eq. tonne(-1). On the other hand, utilization of landfill gas for electricity generation contributed to major savings, in most cases, corresponding to about half of the load caused by direct GHG emission from the landfill. However, this saving can vary significantly depending on what the generated electricity substitutes for. Significant amounts of biogenic carbon may still be stored within the landfill body after 100 years, which here is counted as a saved GHG emission. With respect to landfilling of mixed waste with energy recovery, the net, average GHG accounting ranged from about -70 to 30 kg CO(2)-eq. tonne(- 1), obtained by summing the direct and indirect (upstream and downstream) emissions and accounting for stored biogenic carbon as a saving. However, if binding of biogenic carbon was not accounted for, the overall GHG load would be in the range of 60 to 300 kg CO(2)-eq. tonne( -1). This paper clearly shows that electricity generation as well as accounting of stored biogenic carbon are crucial to the accounting of GHG of waste landfilling.
A method is proposed to estimate CH(4) oxidation efficiency in landfill covers, biowindows or biofilters from soil gas profile data. The approach assumes that the shift in the ratio of CO(2) to CH(4) in the gas profile, compared to the ratio in the raw landfill gas, is a result of the oxidation process and thus allows the calculation of the cumulative share of CH(4) oxidized up to a particular depth. The approach was validated using mass balance data from two independent laboratory column experiments. Values corresponded well over a wide range of oxidation efficiencies from less than 10% to nearly total oxidation. An incubation experiment on 40 samples from the cover soil of an old landfill showed that the share of CO(2) from respiration falls below 10% of the total CO(2) production when the methane oxidation capacity is 3.8 μg CH(4)g(dw)(-1)h(-1) or higher, a rate that is often exceeded in landfill covers and biofilters. The method is mainly suitable in settings where the CO(2) concentrations are not significantly influenced by processes such as respiration or where CH(4) loadings and oxidation rates are high enough so that CO(2) generated from CH(4) oxidation outweighs other sources of CO(2). The latter can be expected for most biofilters, biowindows and biocovers on landfills. This simple method constitutes an inexpensive complementary tool for studies that require an estimation of the CH(4) oxidation efficiency values in methane oxidation systems, such as landfill biocovers and biowindows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.