As the outermost barrier of the body, the skin is exposed to multiple environmental factors, including temperature, humidity, mechanical stress, and chemical stimuli such as odorants that are often used in cosmetic articles. Keratinocytes, the major cell type of the epidermal layer, express a variety of different sensory receptors that enable them to react to various environmental stimuli and process information in the skin. Here we report the identification of a novel type of chemoreceptors in human keratinocytes, the olfactory receptors (ORs). We cloned and functionally expressed the cutaneous OR, OR2AT4, and identified Sandalore, a synthetic sandalwood odorant, as an agonist of this receptor. Sandalore induces strong Ca(2+) signals in cultured human keratinocytes, which are mediated by OR2AT4, as demonstrated by receptor knockdown experiments using RNA interference. The activation of OR2AT4 induces a cAMP-dependent pathway and phosphorylation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinases (p38 MAPK). Moreover, the long-term stimulation of keratinocytes with Sandalore positively affected cell proliferation and migration, and regeneration of keratinocyte monolayers in an in vitro wound scratch assay. These findings combined with our studies on human skin organ cultures strongly indicate that the OR 2AT4 is involved in human keratinocyte re-epithelialization during wound-healing processes.
We and others have previously demonstrated that the human insulin receptor messenger RNA (mRNA) is alternatively spliced such that the 36-nucleotide sequence encoded by exon 11 of the receptor gene is included (Ex11+) or excluded (Ex11-). Although both Ex11- and Ex11+ insulin receptors which differ in the presence or absence of 12 amino acids in the carboxy-terminal alpha-subunit have been demonstrated to function as insulin receptors when independently overexpressed and studied, the possibility that subtle functional differences between the two isoforms exist has received limited attention. Given that the relative abundance of the two mRNA transcripts is highly regulated in a tissue-specific manner, differences in the functional properties of the two receptor variants might contribute to tissue-specific differences in insulin receptor function and insulin action that are known to exist. To address this hypothesis, we transfected cDNAs encoding the two receptor isoforms into Chinese hamster ovary (CHO) cells and prepared several stable CHO cell lines expressing high numbers of Ex11- or Ex11+ receptors. Several functional properties of the expressed insulin receptors were compared in parallel with the following results: 1) steady state binding of insulin to cells expressing the Ex11- isoform exhibited higher (approximately 2-fold) affinity; 2) using two different methods, a significant difference in receptor-mediated insulin internalization was noted such that the Ex11- isoform displayed a higher (approximately 25% increase in the rate constant, Ke) rate of internalization; 3) partially purified Ex11- and Ex11+ receptors displayed similar maximal and insulin dose-response characteristics for receptor autophosphorylation and kinase activity toward an exogenous substrate (poly Glu-Tyr, 4:1); 4) the ability of expressed Ex11- and Ex11+ receptors to couple to a metabolic (glucose incorporation into glycogen) and mitogenic (thymidine incorporation into DNA) action of insulin was not discernibly different. Thus, when expressed in CHO cells, the two alternatively spliced isoforms of the insulin receptor have subtle differences in insulin binding affinity and the kinetics of ligand-stimulated internalization that would be expected to influence the pattern of insulin receptor expression and signaling in vivo in a tissue-specific manner.
Objective: Despite the high prevalence of vertigo globally and an acknowledged, but underreported, effect on an individual's wellbeing, few studies have evaluated the burden on healthcare systems and society. This study was aimed to quantitatively determine the impact of vertigo on healthcare resource use and work productivity. Methods:The economic burden of vertigo was assessed through a multi-country, noninterventional, observational registry of vertigo patients: the Registry to Evaluate the Burden of Disease in Vertigo. Patients included were those with a new diagnosis of Meniere's disease, benign paroxysmal positional vertigo, other vertigo of peripheral vestibular origin, or peripheral vestibular vertigo of unknown origin.Results: A total of 4,294 patients at 618 centers in 13 countries were included during the registry. Of the 4,105 patients analyzed, only half were in employment. Among this working patient population, 69.8% had reduced their workload, 63.3% had lost working days, and 4.6% had changed and 5.7% had quit their jobs, due to vertigo symptoms. Use of healthcare services among patients was high. In the 3 months preceding Visit 1, patients used emergency services 0.4 ± 0.9 times, primary care consultations 1.6 ± 1.8 times, and specialist consultations 1.4 ± 2.0 times (all mean ± SD). A mean of 2.0 ± 5.4 days/patient was also spent in hospital due to vertigo. Conclusion:In addition to the negative impact on the patient from a humanistic perspective, vertigo has considerable impact on work productivity and healthcare resource use.
The effects of extracellular ATP and other nucleotides on the cytosolic free Ca2+ concentration ([Ca2+]i) have been studied in single primary human hepatocytes and in human Hep G2 and HuH-7 hepatoma cells. ATP, adenosine 5′- O-(3-thiotriphosphate) (ATPγS), and UTP caused a concentration-dependent biphasic increase in [Ca2+]iwith an initial peak followed by a small sustained plateau in most cells. In some cells, however, repetitive Ca2+ transients were observed. The rank order of potency was ATP ≥ UTP > ATPγS, and complete cross-desensitization of the Ca2+responses occurred between ATP and UTP. The initial transient peak in [Ca2+]iwas resistant to extracellular Ca2+ depletion, which demonstrates mobilization of internal Ca2+ by inositol 1,4,5-trisphosphate whose formation was enhanced by ATP and UTP. In contrast, the sustained plateau phase required influx of external Ca2+. Ca2+ influx occurs most likely through a capacitative Ca2+ entry mechanism, which was shown to exist in these cells by experiments performed with thapsigargin. On the molecular level, specific mRNA coding for the human P2Y1, P2Y2, P2Y4, and P2Y6 receptors could be detected by RT-PCR in Hep G2 and HuH-7 cells. However, ADP and UDP, which are agonists for P2Y1 and P2Y6 receptors, respectively, caused no changes in [Ca2+]i, demonstrating that these receptors are not expressed at a functional level. Likewise, α,β-methylene-ATP, β,γ-methylene-ATP, AMP, and adenosine were inactive in elevating [Ca2+]i, suggesting that the ATP-induced increase in [Ca2+]iwas not caused by activation of P2X or P1 receptors. Thus, on the basis of the pharmacological profile of the nucleotide-induced Ca2+-responses, extracellular ATP and UTP increase [Ca2+]iby activating P2Y2 and possibly P2Y4 receptors coupled to the Ca2+-phosphatidylinositol signaling cascade in human hepatocytes. This suggests that extracellular nucleotides from various sources may contribute to the regulation of human liver cell functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.