Background: Transfection of cells with gene-specific, single-stranded oligonucleotides can induce the targeted exchange of one or two nucleotides in the targeted gene. To characterize the features of the DNA-repair mechanisms involved, we examined the maximal distance for the simultaneous exchange of two nucleotides by a single-stranded oligonucleotide. The chosen experimental system was the correction of a hprt-point mutation in a hamster cell line, the generation of an additional nucleotide exchange at a variable distance from the first exchange position and the investigation of the rate of simultaneous nucleotide exchanges.
Specific single-stranded oligonucleotides can induce targeted nucleotide sequence correction in eukaryotic genes in vitro and in vivo. Our model for investigating the reasons for the low correction rates achieved by this method is the correction of a point mutation in the hypoxanthine-guanine phosphoribosyltransferase gene (hprt) in the cell line V79-151. Using single-stranded phosphorothioate-modified oligonucleotides, the correction rates of this hprt mutation were low but always reproducible. One reason for low exchange rates may be fast intracellular degradation of the oligonucleotides. Therefore we compared the exchange rates of different 3' and 5' end-modified oligonucleotides with their degradation rates. Thymine-adenine (TA) repeat (clamp)-modified oligonucleotides showed higher correction rates than those with a guanine-cytosine (GC) clamp and 5' clamps induced higher correction rates than clamps at the 3' end. Experiments on the stability of the most effective 5'-TA and 3'-TA clamp-modified oligonucleotide indicated rapid cleavage and the occurrence of shortened oligonucleotides in the presence of cytoplasmic and nuclear extracts. The phosphorothioate-modified oligonucleotides were more stable, but their correction rates were lower. We suggest that there is no direct correlation between the biological stability of the full-length oligonucleotides and the exchange rates achieved.
Specific single-stranded oligonucleotides can induce targeted nucleotide sequence correction in eukaryotic genes in vitro and in vivo. Our model for investigating the reasons for the low correction rates achieved by this method is the correction of a point mutation in the hypoxanthine-guanine phosphoribosyltransferase gene (hprt) in the cell line V79-151. Using single-stranded phosphorothioate-modified oligonucleotides, the correction rates of this hprt mutation were low but always reproducible. One reason for low exchange rates may be fast intracellular degradation of the oligonucleotides. Therefore we compared the exchange rates of different 3' and 5' end-modified oligonucleotides with their degradation rates. Thymine-adenine (TA) repeat (clamp)-modified oligonucleotides showed higher correction rates than those with a guanine-cytosine (GC) clamp and 5' clamps induced higher correction rates than clamps at the 3' end. Experiments on the stability of the most effective 5'-TA and 3'-TA clamp-modified oligonucleotide indicated rapid cleavage and the occurrence of shortened oligonucleotides in the presence of cytoplasmic and nuclear extracts. The phosphorothioate-modified oligonucleotides were more stable, but their correction rates were lower. We suggest that there is no direct correlation between the biological stability of the full-length oligonucleotides and the exchange rates achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.