Purpose: We previously reported that small molecule X-linked inhibitor of apoptosis (XIAP) inhibitors synergize with soluble TRAIL to trigger apoptosis in pancreatic carcinoma cells. Because cancers may preferentially signal via 1 of the 2 agonistic TRAIL receptors, we investigated these receptors as a therapeutic target in pancreatic cancer in the present study.Experimental Design: We examined TRAIL receptor expression and cytotoxicity of specific monoclonal antibodies to TRAIL-R1 (HGS-ETR1, mapatumumab) or TRAIL-R2 (HGS-ETR2, lexatumumab) and of TRAIL receptor selective mutants alone and in combination with small molecule XIAP inhibitors in pancreatic cancer cell lines, in primary specimens, and in a xenotransplant model in vivo.Results: The majority of primary pancreatic carcinoma samples and all cell lines express one or both agonistic TRAIL receptors. Nine of 13 cell lines are more sensitive to mapatumumab-induced apoptosis, whereas lexatumumab requires cross-linking for maximal activity. Similarly, TRAIL-R1 selective mutants display higher cytotoxicity than TRAIL-R2 selective mutants. Small molecule XIAP inhibitors preferentially act in concert with mapatumumab to trigger caspase activation, caspase-dependent apoptosis, and suppress clonogenic survival. Also, primary cultured pancreatic carcinoma cells are more susceptible to mapatumumab than lexatumumab, which is significantly enhanced by a XIAP inhibitor. Importantly, combined treatment with mapatumumab and a XIAP inhibitor cooperates to suppress tumor growth in vivo.Conclusions: Mapatumumab exerts antitumor activity, especially in combination with XIAP inhibitors against most pancreatic carcinoma cell lines, whereas lexatumumab requires cross-linking for optimal cytotoxicity. These findings have important implications for the design of TRAIL-based protocols for pancreatic cancer. Clin Cancer Res; 16(23); 5734-49. Ó2010 AACR.
Background: Transfection of cells with gene-specific, single-stranded oligonucleotides can induce the targeted exchange of one or two nucleotides in the targeted gene. To characterize the features of the DNA-repair mechanisms involved, we examined the maximal distance for the simultaneous exchange of two nucleotides by a single-stranded oligonucleotide. The chosen experimental system was the correction of a hprt-point mutation in a hamster cell line, the generation of an additional nucleotide exchange at a variable distance from the first exchange position and the investigation of the rate of simultaneous nucleotide exchanges.
<div>Abstract<p><b>Purpose:</b> We previously reported that small molecule X-linked inhibitor of apoptosis (XIAP) inhibitors synergize with soluble TRAIL to trigger apoptosis in pancreatic carcinoma cells. Because cancers may preferentially signal via 1 of the 2 agonistic TRAIL receptors, we investigated these receptors as a therapeutic target in pancreatic cancer in the present study.</p><p><b>Experimental Design:</b> We examined TRAIL receptor expression and cytotoxicity of specific monoclonal antibodies to TRAIL-R1 (HGS-ETR1, mapatumumab) or TRAIL-R2 (HGS-ETR2, lexatumumab) and of TRAIL receptor selective mutants alone and in combination with small molecule XIAP inhibitors in pancreatic cancer cell lines, in primary specimens, and in a xenotransplant model <i>in vivo</i>.</p><p><b>Results:</b> The majority of primary pancreatic carcinoma samples and all cell lines express one or both agonistic TRAIL receptors. Nine of 13 cell lines are more sensitive to mapatumumab-induced apoptosis, whereas lexatumumab requires cross-linking for maximal activity. Similarly, TRAIL-R1 selective mutants display higher cytotoxicity than TRAIL-R2 selective mutants. Small molecule XIAP inhibitors preferentially act in concert with mapatumumab to trigger caspase activation, caspase-dependent apoptosis, and suppress clonogenic survival. Also, primary cultured pancreatic carcinoma cells are more susceptible to mapatumumab than lexatumumab, which is significantly enhanced by a XIAP inhibitor. Importantly, combined treatment with mapatumumab and a XIAP inhibitor cooperates to suppress tumor growth <i>in vivo</i>.</p><p><b>Conclusions:</b> Mapatumumab exerts antitumor activity, especially in combination with XIAP inhibitors against most pancreatic carcinoma cell lines, whereas lexatumumab requires cross-linking for optimal cytotoxicity. These findings have important implications for the design of TRAIL-based protocols for pancreatic cancer. <i>Clin Cancer Res; 16(23); 5734–49. ©2010 AACR.</i></p></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.