Insect flight is one of the most intense and energy-demanding physiological activities. High carbohydrate oxidation rates are necessary for take-off, but, to spare the limited carbohydrate reserves, long-distance flyers, such as locusts, soon switch to lipid as the main fuel. We demonstrate that before a flight, locust muscles are metabolically poised for take-off by the release of octopamine from central modulatory dorsal unpaired median (DUM) neurons, which increases the levels of the potent glycolytic activator fructose 2,6-bisphosphate in flight muscle. Because DUM neurons innervating the flight muscles are active during rest but selectively inhibited during flight, they stimulate carbohydrate catabolism during take-off but tend to decrease muscle glycolysis during prolonged flight. cAMP-dependent protein kinase A is necessary but not sufficient for signal transduction, suggesting parallel control via a calcium-dependent pathway. Locust flight is the first reported instance of a direct and specific involvement of neuronal activity in the control of muscle glycolysis in working muscle during exercise.
According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens' absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.
Boar spermatozoa contain a novel pyruvate kinase (PK-S) that is tightly bound at the acrosome of the sperm head and at the fibrous sheath in the principal piece of the flagellum, while the midpiece contains a soluble pyruvate kinase (PK). PK-S could not be solubilized by detergents, but by trypsin with no loss of activity. Purified PK-S as well as PK-S still bound to cell structures and soluble sperm PK have all kinetics similar to those of rabbit muscle PK-M1. The PK-S subunit had a relative molecular mass of 64G 1!10 3 (nZ3), i.e. slightly higher than that of PK-M1, and carried an N-terminal extension (NH 2 -TSEAM-COOH) that is lacking in native PK-M1. Evidence is provided that PK-S is encoded by the PKM gene. Antibodies produced against the N-terminus of purified PK-S (NH 2 -TSEAMPKAHMDAG-COOH) were specific for PK-S as they did not react with somatic PKs or soluble sperm PK, while anti-PK-M1 recognized both sperm PKs. Immunofluorescence microscopy showed anti-PK-S to label the acrosome and the flagellar principal piece, whereas the midpiece containing the mitochondria was labelled only by anti-PK-M1. Immunogold labelling confirmed the localization of PK-S at the acrosome. In the principal piece, both polyclonal anti-PK-M1 and anti-PK-S were found at the fibrous sheath. Our results suggest that PK-S is a major component in the structural organization of glycolysis in boar spermatozoa.Reproduction (2007) 134 81-95
Glycolysis is crucial for sperm functions (motility and fertilization), but how this pathway is regulated in spermatozoa is not clear. This prompted to study the location and the regulatory properties of 6-phosphofructokinase (PFK, EC 2.7.1.11), the most important element for control of glycolytic flux. Unlike some other glycolytic enzymes, PFK showed no tight binding to sperm structures. It could readily be extracted from ejaculated boar spermatozoa by sonication and was then chromatographically purified. At physiological pH, the enzyme was allosterically inhibited by near-physiological concentrations of its co-substrate ATP, which induced co-operativity, i.e. reduced the affinity for the substrate fructose 6-phosphate. Inhibition by ATP was reinforced by citrate and H C . Above pH 8, PFK lost all its regulatory properties and showed maximum activity. However, in the physiological pH range, PFK activity was very sensitive to small changes in effectors. At near-physiological substrate concentrations, PFK activity requires activators (de-inhibitors) of which the combination of AMP and fructose 2,6-bisphosphate (F2,6P 2 ) was most efficient as a result of synergistic effects. The kinetics of PFK suggest AMP, F2,6P 2 , H C , and citrate as allosteric effectors controlling PFK activity in boar spermatozoa. Using immunogold labeling, PFK was localized in the mid-piece and principal piece of the flagellum as well as in the acrosomal area at the top of the head and in the cytoplasmic droplets released from the mid-piece after ejaculation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.