The calcium-binding protein, parvalbumin, was localized immunohistochemically in the human amygdaloid complex. Neuronal cell bodies and fibers that are immunoreactive to parvalbumin were observed in most of the amygdaloid nuclei and cortical areas. Three types of immunoreactive aspiny neurons, ranging from small spherical cells (type 1) to large multipolar cells (type 2) and fusiform cells (type 3), were observed. The densities of the types of neurons that were parvalbumin-immunoreactive varied in the different regions of the amygdala. The highest densities of parvalbumin-immunoreactive neurons were observed in the lateral nucleus, in the magnocellular and intermediate divisions of the basal nucleus, in the magnocellular division of the accessory basal nucleus and in the amygdalohippocampal area. The regions containing the lowest density of parvalbumin-immunoreactive cells were the paralaminar nucleus, the parvicellular division of the basal nucleus, the central nucleus, the medial nucleus and the anterior cortical nucleus. In general, the distribution of immunoreactive fibers and terminals paralleled that of immunoreactive cells. Parvalbumin-immunoreactive varicose fibers formed basket-like plexi and cartridges around the unstained neurons, which suggests that parvalbumin is located in GABAergic basket cells and chandelier cells, respectively. The distribution of parvalbumin-immunoreactive profiles in the human amygdaloid complex was similar to, rather than different from that previously reported in the monkey amygdala (Pitkänen and Amaral [1993] J. Comp. Neurol. 331:14-36). This study provides baseline information about the organization of GABAergic inhibitory circuitries in the human amygdaloid complex.
Calretinin is a calcium-binding protein that colocalizes with GABA in the cerebral cortex and hippocampus of the rat and the monkey. In the present study, we investigated the distribution of calretinin-immunoreactive cells and fibers in the human amygdaloid complex. A conspicuous feature was the high density of calretinin neurons in the human amygdala. The highest densities of the calretinin-immunoreactive neurons were observed in the anterior cortical nucleus, accessory basal nucleus, amygdalohippocampal area, and in the nucleus of the lateral olfactory tract. The paralaminar nucleus, central nucleus, medial nucleus, and the periamygdaloid cortex contained the lowest densities of calretinin neurons. In most of the amygdaloid areas, the calretinin cells had the appearance of aspiny or sparsely spiny local circuit neurons. However, in the amygdalohippocampal area, we found also densely spined dendrites. The cortical areas and the central nucleus were characterized by intense neuropil labeling, while the deep nuclei contained a high density of calretinin-immunoreactive fibers and terminals. Calretinin immunoreactivity was also found in the intra-amygdaloid fiber bundles, stria terminalis, and in the ventral amygdalofugal pathway. This suggests that in addition to the local circuit neurons, calretinin immunoreactivity is also located in neurons that connect the amygdaloid complex with the other brain areas. The distribution and morphological characteristics of calretinin-immunoreactive neurons differed from those of another calcium-binding protein, parvalbumin, in the human amygdala (Sorvari et al. [1995] J. Comp. Neurol. 360:185-212). This suggests that these two calcium-binding proteins are located in different populations of neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.