Drug-coated balloons are a new tool for the treatment of de novo or in-stent stenosis; as yet little is known about the principle by which these devices apply their therapeutic agents during intervention. Concerns remain regarding clinical safety and efficacy of different coatings, mainly influenced by the amount of drug transferred into the arterial tissue and lost into the bloodstream. To assess whether the chemical or mechanical set-up influences drug migration and wash-off, we compared four paclitaxel-coated balloon platforms differing in surface structure (folded versus non-folded) and coating compounds (pure paclitaxel versus paclitaxel plus excipient) in a porcine coronary model. The study revealed high wash-off rates for all devices, exceeding 54.4% of the initial coating contents. In terms of tissue concentration significant differences could be observed between the coating compounds independently from the device platform. For the paclitaxel versus paclitaxel plus excipient balloons tissue concentrations of 0.02 and 0.33μg/mm2, respectively (p<0.01), were detected; for the paclitaxel versus paclitaxel plus excipient-wrapped balloons tissue concentrations were 0.13 and 0.53μg/mm2, respectively (p=0.04). The main driver of drug migration from drug-coated balloon surfaces into arterial tissue is the chemical set-up of the coating. Hydrophilic excipients allow higher tissue concentrations of paclitaxel independent from the mechanical platform. The wash-off from the surface coating remains an unsolved safety issue and may be solved by mechanical modifications of these devices.
Airway stenosis represents the commonest airway complication following lung transplantation, affecting between 7% and 18% of patients. Existing treatment options offer limited efficacy and can cause additional patient morbidity. Paclitaxel‐coated balloons (PCB) have proved effective in managing postinterventional coronary artery re‐stenosis. In a first‐in‐man study, we evaluated similar PCBs in refractory nonanastomotic airway stenosis in 12 patients. Following a single application, luminal patency was maintained in 50% at 270 days. No significant peri‐interventional or early postinterventional complications occurred. Given these encouraging initial findings, further studies appear warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.