Drug-coated balloons are a new tool for the treatment of de novo or in-stent stenosis; as yet little is known about the principle by which these devices apply their therapeutic agents during intervention. Concerns remain regarding clinical safety and efficacy of different coatings, mainly influenced by the amount of drug transferred into the arterial tissue and lost into the bloodstream. To assess whether the chemical or mechanical set-up influences drug migration and wash-off, we compared four paclitaxel-coated balloon platforms differing in surface structure (folded versus non-folded) and coating compounds (pure paclitaxel versus paclitaxel plus excipient) in a porcine coronary model. The study revealed high wash-off rates for all devices, exceeding 54.4% of the initial coating contents. In terms of tissue concentration significant differences could be observed between the coating compounds independently from the device platform. For the paclitaxel versus paclitaxel plus excipient balloons tissue concentrations of 0.02 and 0.33μg/mm2, respectively (p<0.01), were detected; for the paclitaxel versus paclitaxel plus excipient-wrapped balloons tissue concentrations were 0.13 and 0.53μg/mm2, respectively (p=0.04). The main driver of drug migration from drug-coated balloon surfaces into arterial tissue is the chemical set-up of the coating. Hydrophilic excipients allow higher tissue concentrations of paclitaxel independent from the mechanical platform. The wash-off from the surface coating remains an unsolved safety issue and may be solved by mechanical modifications of these devices.
Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) is increasingly used in bi-ventricular failure with cardiogenic shock to maintain systemic perfusion. Nonetheless, it tends to increase left ventricular (LV) afterload and myocardial oxygen demand. In order to mitigate these negative effects on the myocardium, an Impella CP ® (3.5 L/min Cardiac Output) can be used in conjunction with V-A ECMO (ECMELLA approach). We implemented this strategy in a patient with severe acute myocarditis complicated by cardiogenic shock. Due to a hemolysis crisis, Impella CP ® had to be substituted with PulseCath iVAC2L ® , which applies pulsatile flow to unload the LV. A subsequent improvement in LV systolic function was noted, with increased LV ejection fraction (LVEF), LV end-diastolic diameter (LVEDD) reduction, and a reduction in plasma free hemoglobin. This case documents the efficacy of iVAC2L in replacing Impella CP as a LV vent during V-A ECMO, with less hemolysis.
If polymer-free YUKON Choice stents are used in small vessels, valsartan-eluting stents show an identical efficacy as rapamycin-loaded stents. In patients with rapamycin-eluting YUKON Choice stents it seems that the efficacy can be increased by oral valsartan administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.