The soybean pod borer [SPB; Leguminivora glycinivorella (Mats.) Obraztsov] is a major soybean pest in northeastern Asia. A useful method for addressing this problem is the generation of transgenic plants producing double-stranded RNA (dsRNA) that target essential insect genes. In this study, we confirmed that 18S ribosomal RNA is critical for SPB development. Downregulated Spb18S expression induced by dsRNA injection increased larval mortality rates and resulted in early pupation. We also assessed whether Spb18S is silenced in SPB larvae fed on transgenic soybean expressing Spb18S dsRNA. Transgenic plants downregulated Spb18S expression levels and second-instar larval survival rates. Moreover, such plants were less damaged by SPB larvae than control plants under field conditions.
Symbiotic nitrogen fixation provides most of the nitrogen required for soybean growth. Rhizobial nodulation outer proteins (Nops) have been reported to influence host specificity during symbiosis establishment. However, the host proteins that interact with Nops remain unknown. In this study, we generated Sinorhizobium fredii HH103 mutants (HH103ΩNopL, HH103ΩNopT, and HH103ΩNopLΩNopT) and analysed the nodule number (NN) and nodule dry weight (NDW) of 12 soybean germplasms after inoculation with wild-type S. fredii HH103 or the mutant strains. The analysis of chromosome segment substitution lines revealed quantitative trait loci (QTLs) associated with NopL and NopT interactions. A total of 22 QTLs for the 2 nodule traits were detected and mapped to 12 different chromosomes in the soybean genome. Eight and fifteen QTLs were found to be associated with NN and NDW, respectively. Furthermore, 17 candidate genes were selected for further analyses. Considering the results of reverse-transcription quantitative PCR, we propose that the protein products of these 17 candidate genes interact with NopL and NopT.
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.