Glucagon-like peptide-1 (GLP-1) promotes pancreatic β-cell regeneration through GLP-1 receptor (GLP-1R) activation. However, whether it promotes exocrine pancreas growth and thereby increases the risk of pancreatic cancer has been a topic of debate in recent years. Clinical data and animal studies published so far have been controversial. In the present study, we report that GLP-1R activation with liraglutide inhibited growth and promoted apoptosis in human pancreatic cancer cell lines in vitro and attenuated pancreatic tumor growth in a mouse xenograft model in vivo. These effects of liraglutide were mediated through activation of cAMP production and consequent inhibition of Akt and ERK1/2 signaling pathways in a GLP-1R-dependent manner. Moreover, we examined GLP-1R expression in human pancreatic cancer tissues and found that 43.3% of tumor tissues were GLP-1R-null. In the GLP-1R-positive tumor tissues (56.7%), the level of GLP-1R was lower compared with that in tumor-adjacent normal pancreatic tissues. Furthermore, the GLP-1R-positive tumors were significantly smaller than the GLP-1R-null tumors. Our study shows for the first time that GLP-1R activation has a cytoreductive effect on human pancreatic cancer cells in vitro and in vivo, which may help address safety concerns of GLP-1-based therapies in the context of human pancreatic cancer.
Hyperproinsulinemia has gained increasing attention in the development of type 2 diabetes. Clinical studies have demonstrated that glucagon-like peptide-1 (GLP-1)-based therapies significantly decrease plasma proinsulin/insulin ratio in patients with type 2 diabetes. However, the underlying mechanism remains unclear. Prohormone convertase (PC)-1/3 and PC2 are primarily responsible for processing proinsulin to insulin in pancreatic β-cells. We have recently reported that Pax6 mutation down-regulated PC1/3 and PC2 expression, resulting in defective proinsulin processing in Pax6 heterozygous mutant (Pax6(m/+)) mice. In this study, we investigated whether and how liraglutide, a novel GLP-1 analog, modulated proinsulin processing. Our results showed that liraglutide significantly up-regulated PC1/3 expression and decreased the proinsulin to insulin ratio in both Pax6(m/+) and db/db diabetic mice. In the cultured mouse pancreatic β-cell line, Min6, liraglutide stimulated PC1/3 and PC2 expression and lowered the proinsulin to insulin ratio in a dose- and time-dependent manner. Moreover, the beneficial effects of liraglutide on PC1/3 and PC2 expression and proinsulin processing were dependent on the GLP-1 receptor-mediated cAMP/protein kinase A signaling pathway. The same mechanism was recapitulated in isolated mouse islets. In conclusion, liraglutide enhanced PC1/3- and PC2-dependent proinsulin processing in pancreatic β-cells through the activation of the GLP-1 receptor/cAMP/protein kinase A signaling pathway. Our study provides a new mechanism for improvement of pancreatic β-cell function by the GLP-1-based therapy.
Long noncoding RNAs (lncRNAs) play critical roles in tumor progression regulation, including osteosarcoma. Evidence indicates that N 6 -methyladenosine (m 6 A) modification modulates mRNA stability to regulate osteosarcoma tumorigenesis. Here, present research aims to detect the roles of m 6 A-modified lncRNA FOXD2-AS1 in the osteosarcoma pathophysiological process. Clinical data unveiled that osteosarcoma patients with higher FOXD2-AS1 expression had a poorer overall survival rate compared to those with lower FOXD2-AS1 expression. Functional research illuminated that FOXD2-AS1 accelerated the migration, proliferation and tumor growth in vitro and in vivo. Mechanistically, a remarkable m 6 A-modified site was found on the 3ʹ-UTR of FOXD2-AS1, and m 6 A methyltransferase WTAP (Wilms’ tumor 1 associated protein) promoted the methylation modification, thus enhancing the stability of FOXD2-AS1 transcripts. Furthermore, FOXD2-AS1 interacted with downstream target FOXM1 mRNA through m 6 A sites, forming a FOXD2-AS1/m 6 A/FOXM1 complex to heighten FOXM1 mRNA stability. In conclusion, these findings propose a novel regulatory mechanism in which m 6 A-modified FOXD2-AS1 accelerates the osteosarcoma progression through m 6 A manner, which may provide new concepts for osteosarcoma tumorigenesis.
This study aimed to determine whether and how the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide affects the chemoresistance and chemosensitivity of pancreatic cancer cells to gemcitabine in vitro and in vivo. The GLP-1R and protein kinase A (PKA) levels were compared between the human pancreatic cancer cell line PANC-1 and the gemcitabine-resistant cell line PANC-GR. The in vitro effects of liraglutide on the cell proliferation and apoptosis as well as the nuclear factor-kappa B NF-κB expression levels of PANC-GR cells were evaluated. In addition, a mouse xenograft model of human pancreatic cancer was established by s.c. injection of PANC-1 cells, and the effects of liraglutide on the chemosensitivity were evaluated in vitro and in vivo. In contrast to PANC-1 cells, PANC-GR cells exhibited lower expression levels of GLP-1R and PKA. Incubation with liraglutide dose dependently inhibited the growth, promoted the apoptosis, and increased the expression of GLP-1R and PKA of PANC-GR cells. Similar effects of liraglutide were observed in another human pancreatic cancer cell line MiaPaCa-2/MiaPaCa-2-GR. Either the GLP-1R antagonist Ex-9, the PKA inhibitor H89, or the NF-κB activator lipopolysaccharide (LPS) could abolish the antiproliferative and proapoptotic activities of liraglutide. Additionally, each of these agents could reverse the expression of NF-κB and ABCG2, which was decreased by liraglutide treatment. Furthermore, liraglutide treatment increased the chemosensitivity of pancreatic cancer cells to gemcitabine, as evidenced by in vitro and in vivo experiments. Thus, GLP-1R agonists are safe and beneficial for patients complicated with pancreatic cancer and diabetes, especially for gemcitabine-resistant pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.