and optical modeling, we investigate the possible evolution of this cloud assuming either in situ freezing of ternary HNOa/H2SO4/H20 droplets as nitric acid trihydrate, or the formation of the clouds in mountain waves over the east coast of Greenland, as suggested by a mountain wave model. Best agreement with the observations was obtained by assuming mountain-wave-induced cloud formation, which yields nitric acid trihydrate particles with much higher total mass than achieved by assuming synoptic-scale freezing. Our analysis suggests that this rare type of PSC, which we term type Ia-enh, is characterized by nitric acid hydrate particles rather close to thermodynamic equilibrium, while the more common type Ia PSCs appear to contain much less mass than representative of equilibrium.
In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
Abstract. Polar stratospheric clouds (PSC) were observed above Andehes, Norway (69øN, 16øE) with the ALOMAR Rayleigh/Mie/Raman-Lidar during three winters and with an optical particle counter on two occasions. Multiwavelengths measurements allow the derivation of the parameters of a monomodal particle size distribution and the derivation of volume densitiespaper if the refractive index is known. The particle counter results are used to determine the best refractive index value. The relation of volume density to temperature is compared to thermodynamic models. This confirms that the PSCs observed consist mainly of a ternary solution with low water content. PSC Type I a and I b can be distinguished by backscatter ratio, color ratio and cooling rate.
From 2008 to 2019, a comprehensive research project, ‘SFB 754, Climate – Biogeochemistry Interactions in the Tropical Ocean,’ was funded by the German Research Foundation to investigate the climate-biogeochemistry interactions in the tropical ocean with a particular emphasis on the processes determining the oxygen distribution. During three 4-year long funding phases, a consortium of more than 150 scientists conducted or participated in 34 major research cruises and collected a wealth of physical, biological, chemical, and meteorological data. A common data policy agreed upon at the initiation of the project provided the basis for the open publication of all data. Here we provide an inventory of this unique data set and briefly summarize the various data acquisition and processing methods used.
Abstract. From 2008 through 2019, a comprehensive research project, SFB 754, Climate – Biogeochemistry Interactions in the Tropical Ocean, was funded by the German Research Foundation to investigate the climate-biogeochemistry interactions in the tropical ocean with a particular emphasis on the processes determining the oxygen distribution. During three 4-year long funding phases, a consortium of more than 150 scientists conducted or participated in 34 major research cruises and collected a wealth of physical, biological, chemical, and meteorological data. A common data policy agreed upon at the initiation of the project provided the basis for the open publication of all data. Here we provide an inventory of this unique data set and briefly summarize the various data acquisition and processing methods used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.