Therapeutic angiogenesis provides a potential alternative for the treatment of cardiovascular ischemic diseases. Vascular endothelial growth factor (VEGF) is an important component of the angiogenic response to ischemia. Here we used adeno-associated virus (AAV) gene delivery to skeletal muscle to examine the effects of VEGF vs. a stabilized form of hypoxia-inducible factor-1alpha (HIF-1alpha). The recombinant AAVs were injected into mouse tibialis anterior muscle, and their effects were analyzed by immunohistochemistry and functional assays. These analyses showed that stabilized HIF-1alpha markedly increase capillary sprouting and proliferation, whereas VEGF164 or VEGF120 induced only proliferation of endothelial cells without formation of proper capillary structures. The Evans Blue permeability assay indicated that, unlike VEGF, HIF-1alpha overexpression did not increase vascular leakiness in the transduced muscle. Doppler ultrasound imaging showed that vascular perfusion in the HIF-1alpha treated muscles was significantly enhanced when compared to the controls and not further improved by co-expression of the arteriogenic growth factors angiopoietin-1 or platelet-derived growth factor-B. Our results show that AAV-mediated transduction of a stabilized form of HIF-1alpha can circumvent the problems associated with overexpression of individual angiogenic growth factors. HIF-1alpha should thus offer a potent alternative for pro-angiogenic gene therapy.
Edema stemming from leaky blood vessels is common in eye diseases such as age-related macular degeneration and diabetic retinopathy. Whereas therapies targeting vascular endothelial growth factor A (VEGFA) can suppress leakage, side-effects include vascular rarefaction and geographic atrophy. By challenging mouse models representing different steps in VEGFA/VEGF receptor 2 (VEGFR2)-induced vascular permeability, we show that targeting signaling downstream of VEGFR2 pY949 limits vascular permeability in retinopathy induced by high oxygen or by laser-wounding. Although suppressed permeability is accompanied by reduced pathological neoangiogenesis in oxygen-induced retinopathy, similarly sized lesions leak less in mutant mice, separating regulation of permeability from angiogenesis. Strikingly, vascular endothelial (VE)-cadherin phosphorylation at the Y685, but not Y658, residue is reduced when VEGFR2 pY949 signaling is impaired. These findings support a mechanism whereby VE-cadherin Y685 phosphorylation is selectively associated with excessive vascular leakage. Therapeutically, targeting VEGFR2-regulated VE-cadherin phosphorylation could suppress edema while leaving other VEGFR2-dependent functions intact.
UPARANT mitigates laser-induced CNV by inhibiting angiogenesis and inflammation through an action on transcription factors encoding angiogenesis and inflammatory genes. The finding that UPARANT is effective against CNV may help to establish uPAR and its membrane partners as putative targets in the treatment of AMD.
Our data delimitate specific temporal windows during CNV initiation, propagation, maturation, and even recovery in experimental CNV. We show that murine CNV undergoes hypoxia-associated sprouting angiogenesis, and demonstrate involvement of pericytes. Moreover, we have shown expression of HIF-1α to the retinal pigment epithelium surrounding the CNV lesions, together with VEGF upregulation, independently of the HSP response induced by the laser thermal insult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.