Bovine besnoitiosis is caused by the largely unexplored apicomplexan parasite Besnoitia besnoiti. In cows, infection during pregnancy often results in abortion, and chronically infected bulls become infertile. Similar to other apicomplexans B. besnoiti has acquired a largely intracellular lifestyle, but its complete life cycle is still unknown, modes of transmission have not been entirely resolved and the definitive host has not been identified. Outbreaks of bovine besnoitiosis in cattle were described in the 1990s in Portugal and Spain, and later several cases were also detected in France. More cases have been reported recently in hitherto unaffected countries, including Italy, Germany, Switzerland, Hungary and Croatia. To date, there is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level. In addition, the lack of an appropriate small animal laboratory model, and wide gaps in our knowledge on the host-parasite interplay during the life cycle of this parasite, renders vaccine and drug development a cost- and labour-intensive undertaking.
Besnoitia besnoiti infection in cattle is an important emerging protozoan disease in Europe causing economic losses and severe clinical signs, such as generalized dermatitis, orchitis, and vulvitis in affected animals. Neutrophil extracellular trap (NET) formation was recently demonstrated as an important effector mechanism of PMN acting against several invading pathogens. In the present study, interactions of bovine PMN with tachyzoites of B. besnoiti were investigated in this respect in vitro. For the demonstration and quantification of NETs, extracellular DNA was stained by Sytox Orange or Pico Green. Fluorescent illustrations as well as scanning electron microscopy analyses (SEM) showed PMN-promoted NET formation rapidly being induced upon contact with B. besnoiti tachyzoites. Co-localization of extracellular DNA with histones, neutrophil elastase (NE) and myeloperoxidase (MPO) in parasite entrapping structures confirmed the classical characteristics of NET. Exposure of PMN to viable, UV attenuated and dead tachyzoites showed a significant induction of NET formation, but even tachyzoite homogenates significantly promoted NETs when compared to negative controls. NETs were abolished by DNase treatment and were reduced after PMN preincubation with NADPH oxidase-, NE- and MPO-inhibitors. Tachyzoite-triggered NET formation led to parasite entrapment as quantitative assays indicated that about one third of tachyzoites were immobilized in NETs. In consequence, tachyzoites were hampered from active invasion of host cells. Thus, transfer of tachyzoites, previously being confronted with PMN, to adequate host cells resulted in significantly reduced infection rates when compared to PMN-free infection controls. To our knowledge, we here report for the first time B. besnoiti-induced NET formation. Our results indicate that PMN-triggered extracellular traps may represent an important effector mechanism of the host early innate immune response against B. besnoiti which may lead to diminishment of initial parasite infection rates during the acute infection phase.
Onchocerca lupi infection is reported primarily in symptomatic dogs. We aimed to determine the infection in dogs from areas of Greece and Portugal with reported cases. Of 107 dogs, 9 (8%) were skin snip–positive for the parasite. DNA sequences of parasites in specimens from distinct dog populations differed genetically from thoses in GenBank.
Besnoitia besnoiti, an apicomplexan parasite causes economically important disease in cattle in many countries of Africa and Asia is re-emerging in Europe. Serological identification of infected cattle is important because introduction of these animals into naive herds seems to play a major role in the transmission of the parasite. We report new, simplified immunoblot-based serological tests for the detection of B. besnoiti-specific antibodies. Antigens were used under non-reducing conditions in the immunoblots, because reduction of the antigen with beta-mercaptoethanol diminished the antigenicity in both, tachyzoites and bradyzoites. Ten B. besnoiti tachyzoite and ten bradyzoite antigens of 15-45 kDa molecular weight were recognized by B. besnoiti infected cattle, but not or only weakly detected by cattle infected with related protozoan parasites, Neospora caninum, Toxoplasma gondii, Sarcocystis cruzi, Sarcocystis hominis, or Sarcocystis hirsuta. The sensitivity and specificity of B. besnoiti immunoblots were determined with sera from 62 German cattle with clinically confirmed besnoitiosis and 404 sera from unexposed German cattle including 214 sera from animals with a N. caninum-specific antibody response. Using a new scoring system, the highest specificity (100%) and sensitivity (90%) of the immunoblots were observed when reactivity to at least four of the ten selected tachyzoite or bradyzoite antigens was considered as positive. When a cut-off based on this scoring system was applied to both the tachyzoite- and the bradyzoite-based immunoblots, there was an almost perfect agreement with the indirect fluorescent antibody test with a titre of 200 as the positive cut-off. We identified and partially characterized 10 tachyzoite and 10 bradyzoite B. besnoiti antigens which may help to develop new specific and sensitive serological tests based on individual antigens and in the identification of possible vaccine candidates.
As a novel effector mechanism polymorphonuclear neutrophils (PMN) release neutrophil extracellular traps (NETs), which represent protein-labeled DNA matrices capable of extracellular trapping and killing of invasive pathogens. Here, we demonstrate for the first time NET formation performed by caprine PMN exposed to different stages (sporozoites and oocysts) of the goat apicomplexan protozoan parasite Eimeria arloingi. Scanning electron microscopy as well as fluorescence microscopy of sporozoites- and oocysts-PMN co-cultures revealed a fine network of DNA fibrils partially covering the parasites. Immunofluorescence analyses confirmed the co-localization of histones (H3), neutrophil elastase (NE), and myeloperoxidase (MPO) in extracellular traps released from caprine PMN. In addition, the enzymatic activity of NE was found significantly enhanced in sporozoite-exposed caprine PMN. The treatment of caprine NET structures with deoxyribonuclease (DNase) and the NADPH oxidase inhibitor diphenylene iodondium (DPI) significantly reduced NETosis confirming the classical characteristics of NETs. Caprine NETs efficiently trapped vital sporozoites of E. arloingi since 72% of these stages were immobilized-but not killed-in NET structures. As a consequence, early infection rates were significantly reduced when PMN-pre-exposed sporozoites were allowed to infect adequate host cells. These findings suggest that NETs may play an important role in the early innate host response to E. arloingi infection in goats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.