Over the past several years, there has been an increase in concern regarding reproductive hormones in the environment To date, there exists limited research on the fate and transport of these chemicals in the environment. In this study, a series of laboratory batch sorption and miscible-displacement experiments were done using radiolabeled [14C]17beta-estradiol. The 17beta-estradiol concentrations that were used were similar to those found in manures that are applied to field soils. Equilibrium batch experiments indicated high sorption affinity with correlations to mineral particle size and organic matter content. The sorption affinity appeared to be associated with the surface area and/or the cation-exchange capacity of the soil. The miscible-displacement breakthrough curves indicated chemical nonequilibrium transport, and a single highly polar metabolite was present in the column effluent along with sporadic and trace detections of estriol. Sorbed to the soil within the column were found 17beta-estradiol, estrone, and trace and sporadic detections of estriol. Two chemical nonequilibrium, miscible-displacement models were used to describe the column breakthrough curves; one without transformations and the other with transformations. Both models resulted in excellent descriptions of the data, which indicated nonunique solutions and less confidence in the parameter estimates. Nonetheless, the modeling and experimental results implied that degradation/transformation occurred in the sorbed phase and was rapid. Also, both models indicated that sorption was fully kinetic.
Hexabromocyclododecane-gamma (γ-HBCD) is the predominate diastereoisomer in the commercial HBCD mixture used as a flame retardant in a wide variety of consumer products. Three main diastereoisomers, alpha (α), beta (β), and gamma (γ), comprise the mixture. Despite the γ-diastereoisomer being the major diastereoisomer in the mixture and environmental samples, the α-diastereoisomer predominates human tissue and wildlife. This study was conducted to characterize absorption, distribution, metabolism, and excretion parameters of γ-HBCD with respect to dose and time following a single acute exposure and repeated exposure in adult female C57BL/6 mice. Results suggest that 85% of the administered dose (3 mg/kg) was absorbed after po exposure. Disposition was dose independent and did not significantly change after 10 days of exposure. Liver was the major depot (< 0.3% of dose) 4 days after treatment followed by blood, fat, and then brain. γ-HBCD was rapidly metabolized and eliminated in the urine and feces. For the first time, in vivo stereoisomerization was observed of the γ-diastereoisomer to the β-diastereoisomer in liver and brain tissues and to the α- and β-diastereoisomer in fat and feces. Polar metabolites in the blood and urine were a major factor in determining the initial whole-body half-life (1 day) after a single po exposure. Elimination, both whole-body and from individual tissues, was biphasic. Initial half-lives were approximately 1 day, whereas terminal half-lives were up to 4 days, suggesting limited potential for γ-diastereoisomer bioaccumulation. The toxicokinetic behavior reported here has important implications for the extrapolation of toxicological studies of the commercial HBCD mixture to the assessment of risk.
This article is available online at http://dmd.aspetjournals.org ABSTRACT:Among the group of polybrominated diphenyl ethers used as flame-retardants, the fully brominated diphenyl ether, decabromodiphenyl ether (decaBDE), is the most commonly used. Despite the large usage of decaBDE, neither the metabolic pathways nor the absorption have been addressed, and there are very few studies on its toxicology. In this work, it is shown that after a single oral dose of 14 C-labeled decaBDE to rats, at least 10% of the decaBDE dose is absorbed. The major excretion route in conventional rats is via feces that contained 90% of the decaBDE dose. The excretion in bile was close to 10% of the dose and represented mainly metabolites. It cannot be excluded that greater than 10% of the oral dose had been absorbed since 65% of the radioactivity excreted in feces was metabolites. The highest concentrations on a lipid weight basis were found in plasma and blood-rich tissues, and the adipose tissue had the lowest concentration of decaBDE. After derivatization of a phenolic fraction, gas chromatography-mass spectrometry (GC/MS) analyses indicated that metabolites with five to seven bromine atoms had formed, and they possessed a guaiacol structure (a hydroxy and a methoxy group) in one of the rings. In addition, traces of nonabrominated diphenyl ethers and monohydroxylated metabolites were found by GC/MS. Metabolites, characterized by their chemical properties, were interpreted to be covalently bound to macromolecules, either proteins or lipids. In addition, water solubility was suggested. The metabolic pathway was indicated to include a reactive intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.