To understand the molecular basis of potato starch related traits and the underlying starch biosynthesis and degradation, a Quantitative Trait Locus (QTL) analysis in combination with a candidate gene approach was performed. The diploid mapping population C 9 E, consisting of 249 individuals, was assayed over two consecutive years, for chipping colour, cold induced sweetening, starch content, starch granule size, starch gelling temperature, starch enthalpy, amylose content and degree of starch phosphorylation. QTLs were observed for all traits, except enthalpy on eight out of the twelve potato chromosomes. Several QTLs were found to be consistent over 2 years. Clustering of co-localizing QTLs was observed on some chromosomes, indicating common genetic factors for the different traits. On chromosome 2, Soluble Starch Synthase 2 mapped on the same position as QTLs for starch phosphorylation, starch gelling temperature and amylose content. a-glucan, water dikinase co-localizes on chromosome 5 together with QTLs for starch phosphorylation and cold induced sweetening. Furthermore, the genes coding for two phosphorylases (StPho1a and StPho2) coincide with QTLs for starch gelling temperature, chipping colour and starch granule size on chromosome 2 and a QTL for starch phosphorylation on chromosome 9, respectively. The results suggest allelic variation acting on the genetics of the different traits.
Many important crops have received little attention by the scientific community, either because they are not considered economically important or due to their large and complex genomes. De novo transcriptome assembly, using next-generation sequencing data, is an attractive option for the study of these orphan crops. In spite of the large amount of sequencing data that can be generated, there is currently a lack of tools which can effectively help molecular breeders and biologists to mine this type of information. Our goal was to develop a tool that enables molecular breeders, without extensive bioinformatics knowledge, to efficiently study de novo transcriptome data from any orphan crop (http://www.bioinformatics.nl/denovobrowser/db/species/index). The Orphan Crops Browser has been designed to facilitate the following tasks (1) search and identification of candidate transcripts based on phylogenetic relationships between orthologous sequence data from a set of related species and (2) design specific and degenerate primers for expression studies in the orphan crop of interest. To demonstrate the usability and reliability of the browser, it was used to identify the putative orthologues of 17 known lignin biosynthetic genes from maize and sugarcane in the orphan crop Miscanthus sinensis. Expression studies in miscanthus stem internode tissue differing in maturation were subsequently carried out, to follow the expression of these genes during lignification. Our results showed a negative correlation between lignin content and gene expression. The present data are in agreement with recent findings in maize and other crops, and it is further discussed in this paper.Electronic supplementary materialThe online version of this article (doi:10.1007/s11032-015-0430-2) contains supplementary material, which is available to authorized users.
Plant growth, development, and yield of current tomato cultivars are directly affected by low temperatures. Although wild tomato species have been suggested as a potential source for low temperature tolerance, very little is known about their behavior during the reproductive phase. Here, we investigated the impact of suboptimal temperatures (SOT, 16/14°C), as compared to control temperatures (CT, 22/20°C), on plant growth, photosynthetic capacity, and carbohydrate metabolism. Under these conditions, two genotypes were analyzed: a Solanum lycopersicum cultivar Moneymaker and a high-altitude wild species Solanum arcanum LA385, from flowering onset until a later stage of fruit development. Total dry matter production in cv. Moneymaker was reduced up to 30% at SOT, whereas it was hardly affected in wild accession LA385. Specific leaf area, total leaf area, and number of fruits were also decreased at SOT in cv. Moneymaker. In contrast, wild accession LA385 showed an acclimation to SOT, in which ΦPSII and net CO2 assimilation rates were less affected; a similar specific leaf area; higher total leaf area; and higher number of fruits compared to those at CT. In addition, LA385 appeared to have a more distinct sucrose metabolism than cv. Moneymaker at both temperatures, in which it had higher contents of sucrose-6-phosphate, sucrose, and ratio of sucrose: starch in leaves and higher ratio of sucrose: hexose in fruits. Overall, our findings indicate that wild accession LA385 is able to acclimate well to SOT during the reproductive phase, whereas growth and development of cv. Moneymaker is reduced at SOT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.