BackgroundCandida albicans infections are often associated with biofilm formation. Previous work demonstrated that the expression of HWP1 (hyphal wall protein) and of genes belonging to the ALS (agglutinin-like sequence), SAP (secreted aspartyl protease), PLB (phospholipase B) and LIP (lipase) gene families is associated with biofilm growth on mucosal surfaces. We investigated using real-time PCR whether genes encoding potential virulence factors are also highly expressed in biofilms associated with abiotic surfaces. For this, C. albicans biofilms were grown on silicone in microtiter plates (MTP) or in the Centres for Disease Control (CDC) reactor, on polyurethane in an in vivo subcutaneous catheter rat (SCR) model, and on mucosal surfaces in the reconstituted human epithelium (RHE) model.ResultsHWP1 and genes belonging to the ALS, SAP, PLB and LIP gene families were constitutively expressed in C. albicans biofilms. ALS1-5 were upregulated in all model systems, while ALS9 was mostly downregulated. ALS6 and HWP1 were overexpressed in all models except in the RHE and MTP, respectively. The expression levels of SAP1 were more pronounced in both in vitro models, while those of SAP2, SAP4 and SAP6 were higher in the in vivo model. Furthermore, SAP5 was highly upregulated in the in vivo and RHE models. For SAP9 and SAP10 similar gene expression levels were observed in all model systems. PLB genes were not considerably upregulated in biofilms, while LIP1-3, LIP5-7 and LIP9-10 were highly overexpressed in both in vitro models. Furthermore, an elevated lipase activity was detected in supernatans of biofilms grown in the MTP and RHE model.ConclusionsOur findings show that HWP1 and most of the genes belonging to the ALS, SAP and LIP gene families are upregulated in C. albicans biofilms. Comparison of the fold expression between the various model systems revealed similar expression levels for some genes, while for others model-dependent expression levels were observed. This suggests that data obtained in one biofilm model cannot be extrapolated to other model systems. Therefore, the need to use multiple model systems when studying the expression of genes encoding potential virulence factors in C. albicans biofilms is highlighted.
Background: Candida albicans biofilms are commonly found on indwelling medical devices. However, the molecular basis of biofilm formation and development is not completely understood. Expression analysis of genes potentially involved in these processes, such as the ALS (Agglutinine Like Sequence) gene family can be performed using quantitative PCR (qPCR). In the present study, we investigated the expression stability of eight housekeeping genes potentially useful as reference genes to study gene expression in Candida albicans (C. albicans) biofilms, using the geNorm Visual Basic Application (VBA) for Microsoft Excel. To validate our normalization strategies we determined differences in ALS1 and ALS3 expression levels between C. albicans biofilm cells and their planktonic counterparts.
ALS1 and ALS3 encode cell-surface associated glycoproteins that are considered to be important for Candida albicans biofilm formation. The main goal of the present study was to monitor ALS1 and ALS3 gene expression during C. albicans biofilm formation (on silicone) under continuous flow conditions, using the Centers for Disease Control biofilm reactor (CDC reactor). For ALS1, we found few changes in gene expression until later stages of biofilm formation (72 and 96 h) when this gene appeared to be downregulated relative to the gene expression level in the start culture. We observed an induction of ALS3 gene expression in the initial stages of biofilm formation (0.5, 1, and 6 h), whereas at later stages, this gene was also downregulated relative to the gene expression level in the start culture. We also found that biofilms of an als3/als3 deletion mutant contained less filaments at several time points (1, 6, 24, and 48 h), although filamentation as such was not affected in this strain. Together, our data indicate an important role for ALS3 in the early phases of biofilm formation in the CDC reactor, probably related to adhesion of filaments, while the role of ALS1 is less clear.
30Biofilm formation is often associated with persistent Candida albicans infections.
Increased resistance to fluconazole has been reported in oral, oesophageal and urinary Candida isolates, but this has not been observed commonly in genital tract isolates. The rate of isolation of Candida spp. and their susceptibility to amphotericin B, flucytosine and azoles were determined in a number of clinical practices in the city of Ghent, Belgium. Patients with symptomatic vulvovaginal candidiasis (VVC) were treated with fluconazole, and the mycological and clinical outcomes were evaluated. Isolates were identified as Candida albicans (78.6%), Candida guilliermondii (17.3%), Candida glabrata (2.6%) and Candida dubliniensis (1.3%). The rates of mycological and clinical cures were 79.5% and 100%, respectively. Women with recurrent VVC were infected more frequently by non-albicans Candida spp., but no association was found between the use of antifungal agents and the presence of non-albicans spp. In-vitro resistance to fluconazole was not detected, even among subsequent Candida isolates from nine patients for whom mycological cure was not achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.