Anaerobic methanotrophic (ANME) archaea have recently been reported to be capable of using insoluble extracellular electron acceptors via extracellular electron transfer (EET). In this study, we investigated EET by a microbial community dominated by “Candidatus Methanoperedens” archaea at the anode of a bioelectrochemical system (BES) poised at 0 V vs. standard hydrogen electrode (SHE), in this way measuring current as a direct proxy of EET by this community. After inoculation of the BES, the maximum current density was 274 mA m–2 (stable current up to 39 mA m–2). Concomitant conversion of 13CH4 into 13CO2 demonstrated that current production was methane-dependent, with 38% of the current attributed directly to methane supply. Based on the current production and methane uptake in a closed system, the Coulombic efficiency was about 17%. Polarization curves demonstrated that the current was limited by microbial activity at potentials above 0 V. The metatranscriptome of the inoculum was mined for the expression of c-type cytochromes potentially used for EET, which led to the identification of several multiheme c-type cytochrome-encoding genes among the most abundant transcripts in “Ca. Methanoperedens.” Our study provides strong indications of EET in ANME archaea and describes a system in which ANME-mediated EET can be investigated under laboratory conditions, which provides new research opportunities for mechanistic studies and possibly the generation of axenic ANME cultures.
Light/dark cycles can impact the electron distribution in Rhodopseudomonas palustris, a hyperversatile photoorganoheterotrophic purple non-sulfur bacterium (PNSB). Dynamic conditions during diel cycles are important for the physiology of PNSB, but the coupling between illumination patterns and redox balancing has not been extensively studied. For survival and growth, Rhodopseudomonas has developed different mechanisms to allocate electrons under dynamic growth conditions. Products such as hydrogen and poly-β-hydroxyalkanoates (PHAs) can form alternative electron sinks. A continuous culture, fed with a balanced nutrients medium, was exposed to three different conditions: 24 h continuous infrared illumination, 16h light/8h dark, and 8h light/16h dark. Light and dark phase durations in a cycle determined the energy availability level (light) and the attainment of a stationary state. Under long dark phases, the acetate substrate accumulated to levels that could not be depleted by growth in the light. Under short dark phases, acetate was rapidly consumed in the light with most of the phototrophic growth occurring under acetate-limiting conditions. Under diel cycles, substrate uptake and growth were unbalanced and Rhodopseudomonas shunted the excess of carbon and electron flow first toward PHAs production. Only secondarily, when PHA storage got saturated, the electron excess was redirected toward H2. A numerical model described well the dynamics of biomass and nutrients during the different light/dark cycle regimes. The model simulations allowed determination of stoichiometric and kinetic parameters for conversion by Rhodopseudomonas. Understanding the inherent process dynamics of diel light cycles in purple sulfur bacteria cultures would enable optimization procedures for targeted bioproduct formation.
Anaerobic methanotrophic (ANME) archaea conserve energy from the breakdown of methane, an important driver of global warming, yet the extrachromosomal genetic elements that impact the activities of ANME archaea are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus. These have been maintained in two bioreactors that contain enrichment cultures dominated by different Methanoperedens species and co-occur with Methanoperedens species in other anoxic environments. By manual curation we show that two of the plasmids are large (155,607 bp and 191,912 bp), circular, and replicate bidirectionally. The group of Methanoperedens species that carry these plasmids is related to "Ca. Methanoperedens nitroreducens", "Ca. Methanoperedens ferrireducens", "Ca. Methanoperedens manganicus" and the plasmids occur in the same copy number as the main chromosome. The larger plasmid encodes transporters that potentially enhance access to Ni, which is required for the methyl-CoM reductase (Mcr), Co required for the cobalamin cofactor needed for methyltransferases, and amino acid uptake. We show that many plasmid genes are actively transcribed, including genes involved in plasmid chromosome maintenance and segregation, a Co2+/Ni2+ transporter and cell protective proteins. Notably, one plasmid carries three tRNAs and two colocalized genes encoding ribosomal protein uL16 and elongation factor eEF2. These are not encoded in the host Methanoperedens genome and uL16 and eEF2 were highly expressed, indicating an obligate interdependence between this plasmid and its host. The finding of plasmids of Methanoperedens opens the way for the development of genetic vectors that could be used to probe little understood aspects of Methanoperedens physiology. Ultimately, this may provide a route to introduce or alter genes that may enhance growth and overall metabolism to accelerate methane oxidation rates.
Anaerobic methanotrophic (ANME) archaea obtain energy from the breakdown of methane, yet their extrachromosomal genetic elements are little understood. Here we describe large plasmids associated with ANME archaea of the Methanoperedens genus in enrichment cultures and other natural anoxic environments. By manual curation we show that two of the plasmids are large (155,605 bp and 191,912 bp), circular, and may replicate bidirectionally. The plasmids occur in the same copy number as the main chromosome, and plasmid genes are actively transcribed. One of the plasmids encodes three tRNAs, ribosomal protein uL16 and elongation factor eEF2; these genes appear to be missing in the host Methanoperedens genome, suggesting an obligate interdependence between plasmid and host. Our work opens the way for the development of genetic vectors to shed light on the physiology and biochemistry of Methanoperedens, and potentially genetically edit them to enhance growth and accelerate methane oxidation rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.