The retina of a diurnal insectivorous lizard, Ctenophorus ornatus (Agamidae) was investigated using microspectrophotometry and light and electron microscopy. A prominent broad yellow band was observed that extended across the mid-retina. The yellow coloration was found to originate from both oil droplets and diffuse pigmentation within cone inner segments. Microspectrophotometric analysis revealed yellow oil droplets with variable absorption of wavelengths below 520 nm and transparent oil droplets with no detectable absorptance between 350 and 750 nm. Cones with transparent oil droplets lacked the diffuse yellow pigmentation. The mean wavelengths of maximum absorbance of visual pigments in the isolated cone outer segments were at 440, 493, and 571 nm. The retina was found to possess a deep convexiclivate fovea located within the yellow band, slightly dorsotemporal of the retinal midpoint. The topography of the retinal ganglion cells revealed that the fovea was contained within an area centralis. Photoreceptors were either single (80%) or unequal double (20%) cones. Within the region of the fovea, the cones were approximately 20% the diameter of those in the peripheral retina. Colored oil droplets and yellow pigment may increase visual acuity by absorbing short wavelength light scattered either by the atmosphere or the optical structures of the eye. The presence of a fovea containing slender cone photoreceptors and three visual pigments suggests that the lizard has high acuity and the potential for color vision.
BackgroundIt has been shown that olfactory ensheathing glia (OEG) and Schwann cell (SCs) transplantation are beneficial as cellular treatments for spinal cord injury (SCI), especially acute and sub-acute time points. In this study, we transplanted DsRED transduced adult OEG and SCs sub-acutely (14 days) following a T10 moderate spinal cord contusion injury in the rat. Behaviour was measured by open field (BBB) and horizontal ladder walking tests to ascertain improvements in locomotor function. Fluorogold staining was injected into the distal spinal cord to determine the extent of supraspinal and propriospinal axonal sparing/regeneration at 4 months post injection time point. The purpose of this study was to investigate if OEG and SCs cells injected sub acutely (14 days after injury) could: (i) improve behavioral outcomes, (ii) induce sparing/regeneration of propriospinal and supraspinal projections, and (iii) reduce tissue loss.ResultsOEG and SCs transplanted rats showed significant increased locomotion when compared to control injury only in the open field tests (BBB). However, the ladder walk test did not show statistically significant differences between treatment and control groups. Fluorogold retrograde tracing showed a statistically significant increase in the number of supraspinal nuclei projecting into the distal spinal cord in both OEG and SCs transplanted rats. These included the raphe, reticular and vestibular systems. Further pairwise multiple comparison tests also showed a statistically significant increase in raphe projecting neurons in OEG transplanted rats when compared to SCs transplanted animals. Immunohistochemistry of spinal cord sections short term (2 weeks) and long term (4 months) showed differences in host glial activity, migration and proteoglycan deposits between the two cell types. Histochemical staining revealed that the volume of tissue remaining at the lesion site had increased in all OEG and SCs treated groups. Significant tissue sparing was observed at both time points following glial SCs transplantation. In addition, OEG transplants showed significantly decreased chondroitin proteoglycan synthesis in the lesion site, suggesting a more CNS tolerant graft.ConclusionsThese results show that transplantation of OEG and SCs in a sub-acute phase can improve anatomical outcomes after a contusion injury to the spinal cord, by increasing the number of spared/regenerated supraspinal fibers, reducing cavitation and enhancing tissue integrity. This provides important information on the time window of glial transplantation for the repair of the spinal cord.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.