We report here the isolation of a human RNA polymerase II complex containing a subset of the basal transcription factors and the human homologues of the yeast SRB (for suppressors of RNA polymerase B) proteins. The complex contains transcriptional coactivators and increases the activation of transcription. In addition, some components of the RNA polymerase II complex participate in DNA repair.
ABSTRACT5-Capping is an early mRNA modification that has important consequences for downstream events in gene expression. We have isolated mammalian cDNAs encoding capping enzyme. They contain the sequence motifs characteristic of the nucleotidyl transferase superfamily. The predicted mouse and human enzymes consist of 597 amino acids and are 95% identical. Mouse cDNA directed synthesis of a guanylylated 68-kDa polypeptide that also contained RNA 5-triphosphatase activity and catalyzed formation of RNA 5-terminal GpppG. A haploid strain of Saccharomyces cerevisiae lacking mRNA guanylyltransferase was complemented for growth by the mouse cDNA. Conversion of Lys-294 in the KXDG-conserved motif eliminated both guanylylation and complementation, identifying it as the active site. The K294A mutant retained RNA 5-triphosphatase activity, which was eliminated by N-terminal truncation. Full-length capping enzyme and an active C-terminal fragment bound to the elongating form and not to the initiating form of polymerase. The results document functional conservation of eukaryotic mRNA guanylyltransferases from yeast to mammals and indicate that the phosphorylated C-terminal domain of RNA polymerase II couples capping to transcription elongation. These results also explain the selective capping of RNA polymerase II transcripts.Addition of a 5Ј-terminal cap is an important, early event in mRNA formation (1). This structural hallmark of most eukaryotic mRNAs enhances splicing (2-4), transport (5), translation (6), and stability (7,8) and is essential for viability (9).Caps are formed on nascent nuclear pre-mRNAs by conversion of 5Ј-tri-diphosphate to 5Ј-diphosphate ends, followed by addition of GMP and methylation (1, 10). The guanylyltransfer reaction characterized in various systems involves formation of an active enzyme intermediate containing GMP covalently attached to lysine (11). In yeast, mRNA capping enzyme consists of separate subunits for RNA 5Ј-triphosphatase and guanylyltransferase activities (9, 12). cDNA clones coding for mRNA guanylyltransferase in Saccharomyces cerevisiae (9), Schizosaccharomyces pombe (13), and Candida albicans (14) have been sequenced. Each contains the active site lysine in KXDG (13, 15), one of several highly conserved motifs characteristic of a superfamily of nucleotidyl transferases (16). A number of viral capping enzymes also contain these diagnostic sequence motifs, and the recently solved structure of capping enzyme from Chlorella virus PBCV-1 suggests that specific residues in these motifs are important for binding GTP (17). Despite this detail of sequence and structure information, no metazoan capping enzyme previously has been cloned and characterized.To explore the molecular interactions that result in selective capping of RNA polymerase II (pol II) transcripts in mammalian cells, we have isolated and characterized cDNA clones that code for the human and mouse capping enzymes. Functional studies demonstrated that the mammalian enzyme complements the lethality of a S. cerevisiae mu...
Transcription is regulated by the state of phosphorylation of a heptapeptide repeat known as the carboxy-terminal domain (CTD) present in the largest subunit of RNA polymerase II (RNAPII). RNAPII that associates with transcription initiation complexes contains an unphosphorylated CTD, whereas the elongating polymerase has a phosphorylated CTD. Transcription factor IIH has a kinase activity specific for the CTD that is stimulated by the formation of a transcription initiation complex. Here, we report the isolation of a cDNA clone encoding a 150-kD polypeptide, which, together with RNAPII, reconstitutes a highly specific CTD phosphatase activity. Functional analysis demonstrates that the CTD phosphatase allows recycling of RNAPII. The phosphatase dephosphorylates the CTD allowing efficient incorporation of RNAPII into transcription initiation complexes, which results in increased transcription. The CTD phosphatase was found to be active in ternary elongation complexes. Moreover, the phosphatase stimulates elongation by RNAPII; however, this function is independent of its catalytic activity.
We have isolated a human RNA polymerase II complex that contains chromatin structure remodeling activity and histone acetyltransferase activity. This complex contains the Srb proteins, the Swi-Snf complex, and the histone acetyltransferases CBP and PCAF in addition to RNA polymerase II. Notably, the general transcription factors are absent from this complex. The complex was purified by two different methods: conventional chromatography and affinity chromatography using antibodies directed against CDK8, the human homolog of the yeast Srb10 protein. Protein interaction studies demonstrate a direct interaction between RNA polymerase II and the histone acetyltransferases p300 and PCAF. Importantly, p300 interacts specifically with the nonphosphorylated, initiation-competent form of RNA polymerase II. In contrast, PCAF interacts with the elongation-competent, phosphorylated form of RNA polymerase II.
A complex that represses activated transcription and contains the human homologs of the yeast Srb7, Srb10, Srb11, Rgr1, and Med6 proteins was isolated. The complex is devoid of the Srb polypeptides previously shown to be components of the yeast Mediator complex that functions in transcriptional activation. The complex phosphorylates the CTD of RNA polymerase II (RNAPII) at residues other than those phosphorylated by the kinase of TFIIH. Moreover, the complex specifically interacts with RNAPII. The interaction is not mediated by the CTD of RNAPII, but is precluded by phosphorylation of the CTD. Our results indicate that the complex is a subcomplex of the human RNAPII holoenzyme. We suggest that the RNAPII holoenzyme is a transcriptional control panel, integrating and responding to specific signals to activate or repress transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.