Vertical wind shear and concentration gradients of viable, airborne bacteria were used to calculate the upward flux of viable cells above bare soil and canopies of several crops. Concentrations at soil or canopy height varied from 46 colonyforming units per m3 over young corn and wet soil to 663 colony-forming units per
Effects of water stress on phenology, growth, stomatal activity and water status were assessed from April to November 1996 in 2-year-old seedlings of Quercus frainetto Ten. (Quercus conferta Kit.), Quercus pubescens Willd., Quercus macrolepis Kotschy (Quercus aegilops auct.) and Quercus ilex L. growing in containers in northern Greece. All four species developed more than 50% of their total leaf area before the beginning of June--an adaptation to arid climates. Well-irrigated plants tended to develop greater individual leaf area, number of leaves per plant, total plant leaf area, height and root:shoot ratios than water-stressed plants, but the difference between treatments was not significant for any parameter in any species. Quercus macrolepis appeared to be the most drought-tolerant of the four species. It maintained the highest number of leaves of the smallest size and increased the proportion of fine roots during drought. In all species, drought caused significant decreases in stomatal conductance and predawn and midday water potentials from mid-July until the end of August, when the lowest soil water content and highest mean daily air temperatures and midday leaf temperatures occurred; however, the responses were species-specific. Among the four species, Quercus macrolepis sustained the highest stomatal conductance despite very low water potentials, thus overcoming drought by means of desiccation tolerance. Quercus ilex decreased stomatal conductance even before severe water stress occurred, thereby avoiding desication during drought. Quercus pubescens had the highest water potential despite a high stomatal conductance, indicating that its leaf water status was independent of stomatal activity. Quercus frainetto was the least drought-resistant of the four species. During drought it developed very low water potentials despite markedly reduced stomatal aperture.
The effect of essential oils and individual monoterpenoids on soil-borne fungi, in pure and mixed cultures, in growth media and in the soil environment, was investigated. Essential oils were extracted from lavender (Lavandula stoechas), oregano (Origanum vulgare subsp. hirtum), sage (Salvia fruticosa) and spearmint (Mentha spicata). The monoterpenoids tested were fenchone, carvacrol, 1,8-cineole, carvone, α-pinene and terpinen-4-ol.Their effect was examined on growth and sporulation of Aspergillus terreus, Fusarium oxysporum, Penicillium expansum and Verticillium dahliae isolated from an organic cultivation of tomato. All tested essential oils and individual monoterpenoids inhibited mycelial growth in all fungi and conidial production in most fungi. The strongest inhibitory activity on mycelial growth was exhibited by oregano and spearmint oils and by carvacrol and carvone, respectively their main constituents. The inhibitory activity was clearly fungistatic in A. terreus and F. oxysporum but fungicidal in V. dahliae. On sporulation, clearly stimulatory effects were observed alongside inhibitory ones. Conidial production was always promoted by α-pinene in P. expansum and by sage oil in F. oxysporum. At certain dosages it was promoted by cineole and carvone in F. oxysporum, and by lavender oil in A. terreus and V. dahliae. Experiments with carvone and carvacrol against mixed fungal cultures in a soil environment showed that V. dahliae was the most sensitive and A. terreus the most tolerant of the four fungi. Our results demonstrate strong but divergent effects and selectivity of action of the lower terpenoids on fungal strains that can become serious pests of tomato. Of special importance is the complete inhibition of growth and conidial production of V. dahliae, a pathogen otherwise very resistant to chemical control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.