The oprF gene, expressing Pseudomonas aeruginosa major outer membrane protein OprF, was subjected to semi-random linker mutagenesis by insertion of a 1.3 kb HincII kanamycin-resistance fragment from plasmid pUC4KAPA into multiple blunt-ended restriction sites in the oprF gene. The kanamycin-resistance gene was then removed by PstI digestion, which left a 12 nucleotide pair linker residue. Nine unique clones were identified that contained such linkers at different locations within the oprF gene and were permissive for the production of full-length OprF variants. In addition, one permissive site-directed insertion, one non-permissive insertion and one carboxyterminal insertion leading to proteolytic truncation were also identified. These mutants were characterized by DNA sequencing and reactivity of the OprF variants with a bank of 10 OprF-specific monoclonal antibodies. Permissive clones produced OprF variants that were shown to be reactive with the majority of these monoclonal antibodies, except where the insertion was suspected of interrupting the epitope for the specific monoclonal antibody. In addition, these variants were shown to be 2-mercaptoethanol modifiable, to be resistant to trypsin cleavage in intact cells and partly cleaved to a high-molecular-weight core fragment in outer membranes and , where studied, to be accessible to indirect immunofluorescence labelling in intact cells by monoclonal antibodies specific for surface epitopes. Based on these data, a revised structural model for OprF is proposed.
Clostridium perfringens alpha-toxin is a 370-residue, zinc-dependent, phospholipase C that is the key virulence determinant in gas gangrene. It is also implicated in the pathogenesis of sudden death syndrome in young animals and necrotic enteritis in chickens. Previously characterized alpha-toxins from different strains of C. perfringens are almost identical in sequence and biochemical properties. We describe the cloning, nucleotide sequencing, expression, characterization, and crystal structure of alpha-toxin from an avian strain, SWan C. perfringens (SWCP), which has a large degree of sequence variation and altered substrate specificity compared to these strains. The structure of alpha-toxin from strain CER89L43 has been previously reported in open (active site accessible to substrate) and closed (active site obscured by loop movements) conformations. The SWCP structure is in an open-form conformation, with three zinc ions in the active site. This is the first example of an open form of alpha-toxin crystallizing without the addition of divalent cations to the crystallization buffer, indicating that the protein can retain three zinc ions bound in the active site. The topology of the calcium binding site formed by residues 269, 271, 336, and 337, which is essential for membrane binding, is significantly altered in comparison with both the open and closed alpha-toxin structures. We are able to relate these structural changes to the different substrate specificity and membrane binding properties of this divergent alpha-toxin. This will provide essential information when developing an effective vaccine that will protect against C. perfringens infection in a wide range of domestic livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.