ABSTRACT:The use of higher-functionality oligomers of glutaraldehyde on network formation was investigated and compared with glutaraldehyde monomer in step-growth reactions. The effect of using such oligomers in network formation depends on the stoichiometry, which alters either the branching or both the branching and crosslinking of the network. This was demonstrated in the properties of poly-(vinyl alcohol) (PVA) networks crosslinked with glutaraldehyde using cryogenic scanning electron microscopy, water swelling studies, and protein transfer across membranes. General guidelines were given for the proper use of glutaraldehyde solutions.
Poly(vinyl alcohol) (PVAl) hydrogel networks cross-linked with glutaraldehyde were prepared and their properties as membranes examined using a variety of techniques including preparative electrophoresis. Electroendosmosis (EEO) was observed and shown to be the result of charges on the membrane and of complexation with borate buffer ions. Investigation of "glutaraldehyde" solutions showed acid entities in, or formed in "glutaraldehyde" were responsible for EEO. Techniques for using "glutaraldehyde" which minimize EEO are described.
Gradient gel electrophoresis was used to examine the separation properties of novel cross-linking compounds for polyacrylamide (PAAm). At low %T and at the same %C protein migration difference is accentuated for bismethacrylamide cross-linked networks relative to bisacrylamide cross-linked networks. Similar properties were observed for cyclic monomers at low %T. This trend is maintained throughout the gradient. However, at higher %T migration differential relative to N,N'-methylenebisacrylamide (Bis) was less pronounced. Evidence from gradient gels suggests that reactivity and functionality of vinyl groups impose an overriding control over network formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.