Herein, we describe a fast and robust method for achieving (68)Ga-labelling of the EGFR-selective monoclonal antibody (mAb) Cetuximab using the bioorthogonal Inverse-electron-Demand Diels-Alder (IeDDA) reaction. The in vivo imaging of EGFR is demonstrated, as well as the translation of the method within a two-step pretargeting strategy.
The aim of this perspective is to critically review the three most prominent bioorthogonal reactions that are used presently, on both a purely chemical level and in the context of biological systems. This includes the uses both for synthesis of therapeutic molecules, modification of large biomolecules or antibodies, and in particular, the exciting use in the field of 'pre-targeting', for both possible treatment and imaging technologies. We will compare the validity of each reaction when compared to others, and their usefulness in biological systems, as each methodology has clear advantages over the others in differing environments.
The copper-free click (CFC) reaction has been evaluated for its potential application to in vivo pre-targeting for PET imaging. A promising biodistribution profile is demonstrated when employing [(18)F]2-fluoroethylazide ([(18)F]1) and optimisation of the CFC reaction with a series of cyclooctynes shows that reactions proceed efficiently with tantalizing opportunities for application-specific tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.