The objective of this study was to examine the effects of a Saccharomyces cerevisiae live cell product and a S. cerevisiae culture product on the in vitro mixed ruminal microorganism fermentation of ground corn, soluble starch, alfalfa hay, and Coastal bermudagrass hay. In the presence of ground corn, neither concentration (0.35 or 0.73 g/L) of S. cerevisiae culture nor live cells had any effect on final pH, H2, CH4, propionate, or butyrate. The S. cerevisiae culture had no effect on acetate, but both concentrations of S. cerevisiae live cells decreased acetate and the acetate:propionate ratio. When soluble starch was the substrate, both concentrations of S. cerevisiae live cells and 0.73 g/L of S. cerevisiae culture decreased the acetate:propionate ratio. Although the treatment effects were not statistically significant, both concentrations of live cells and 0.73 g/L of the culture decreased lactate concentrations compared with the control incubations. When alfalfa hay served as the substrate, neither the S. cerevisiae culture nor the live cells had an effect on propionate, butyrate, or the acetate:propionate ratio. Both concentrations of S. cerevisiae culture decreased the final pH and in vitro dry matter disappearance, and the 0.73 g/L treatment decreased the amount of acetate. However, both treatments of S. cerevisiae live cells increased final pH and decreased acetate and in vitro dry matter disappearance. Neither yeast treatment had much effect on the Coastal bermudagrass hay fermentations. In general, both S. cerevisiae supplements seemed to have similar effects on the mixed ruminal microorganism fermentation.
Salmonella colonization and infection in production animals such as pigs are a cause for concern from a public health perspective. Variations in susceptibility to natural infection may be influenced by the intestinal microbiota. Using 16S rRNA compositional sequencing, we characterized the fecal microbiome of 15 weaned pigs naturally infected with Salmonella at 18, 33, and 45 days postweaning. Dissimilarities in microbiota composition were analyzed in relation to Salmonella infection status (infected, not infected), serological status, and shedding pattern (nonshedders, single-point shedders, intermittent-persistent shedders). Global microbiota composition was associated with the infection outcome based on serological analysis. Greater richness within the microbiota postweaning was linked to pigs being seronegative at the end of the study at 11 weeks of age. Members of the Clostridia, such as Blautia, Roseburia, and Anaerovibrio, were more abundant and part of the core microbiome in nonshedder pigs. Cellulolytic microbiota (Ruminococcus and Prevotella) were also more abundant in noninfected pigs during the weaning and growing stages. Microbial profiling also revealed that infected pigs had a higher abundance of Lactobacillus and Oscillospira, the latter also being part of the core microbiome of intermittent-persistent shedders. These findings suggest that a lack of microbiome maturation and greater proportions of microorganisms associated with suckling increase susceptibility to infection. In addition, the persistence of Salmonella shedding may be associated with an enrichment of pathobionts such as Anaerobiospirillum. Overall, these results suggest that there may be merit in manipulating certain taxa within the porcine intestinal microbial community to increase disease resistance against Salmonella in pigs. IMPORTANCE Salmonella is a global threat for public health, and pork is one of the main sources of human salmonellosis. However, the complex epidemiology of the infection limits current control strategies aimed at reducing the prevalence of this infection in pigs. The present study analyzes for the first time the impact of the gut microbiota in Salmonella infection in pigs and its shedding pattern in naturally infected growing pigs. Microbiome (16S rRNA amplicon) analysis reveals that maturation of the gut microbiome could be a key consideration with respect to limiting the infection and shedding of Salmonella in pigs. Indeed, seronegative animals had higher richness of the gut microbiota early after weaning, and uninfected pigs had higher abundance of strict anaerobes from the class Clostridia, results which demonstrate that a fast transition from the suckling microbiota to a postweaning microbiota could be crucial with respect to protecting the animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.